Изобретение относится к области радиотехники, в частности, к способам и технике радиотехнического мониторинга источников радиоизлучений.
Известны следующие методы и способы измерения параметров сигналов с частотной модуляцией [Смирнов Ю.А. Радиотехническая разведка- М.: Воениздат, 2001. - с. 129-133]: с помощью неперестраиваемого и перестраиваемого радиоприемного устройства, функциональный метод, метод свертки спектра сигнала.
Наиболее близким по технической сущности (прототипом к предполагаемому изобретению) является способ определения параметров ЛЧМ сигналов в средствах радиотехнического мониторинга (РТМ), заключающийся в сравнении сигнала с его задержанной копией на выходе автокорреляционной схемы [Смирнов Ю.А. Радиотехническая разведка - М.: Воениздат, 2001. - с. 125-128, Патент RU 2578041 С1, МПК G01S 13/00, опубл. 20.03.2016. бюл. №8], основанный на приеме сигнала автокорреляционным приемником (АКП), определении длительности импульса τu методом генератор-пересчетной схемы [Смирнов Ю.А.
Радиотехническая разведка- М.: Воениздат, 2001. - с. 108-111] и определении ширины спектра сигнала Δƒс согласно выражения:
где ƒp - разностная частота сигнала на выходе АКП, τз - длительность задержки сигнала.
Недостатками метода технического анализа сложных сигналов в средствах РТМ [Смирнов Ю.А. Радиотехническая разведка - М.: Воениздат, 2001. - с. 125-128, Патент RU 2578041 С1, МПК G01S 13/00, опубл. 20.03.2016. бюл. №8] являются определение параметров только для сигналов с ЛЧМ-модуляцией с возможными ошибками при одновременном присутствии ФКМ и простых сигналов, имеющих близкие (одинаковые) несущие частоты.
Технический результат, на достижение которого направлено заявляемое изобретение, выражается в повышении точности определения параметров ЛЧМ, ФКМ и простых радиоимпульсов, имеющих несущие частоты в полосе входного высокочастотного фильтра приемника, при приеме отдельно ЛЧМ, ФКМ или простых радиоимпульсов, а также при одновременном приеме ЛЧМ и простых радиоимпульсов.
Указанный технический результат достигается тем, что принятый сигнал фильтруют, задерживают на заданное время, перемножают сигнал с его задержанной копией, оценивают разностную частоту сигнала ƒраз1, выделяют составляющую сигнала на разностной частоте ƒраз1 и низкочастотную составляющую сигнала, получают их амплитудно-частотных спектров (АЧС), частоту принятого сигнала после фильтрации удваивают, сигнал на удвоенной частоте задерживают на заданное время, перемножают его с задержанной копией, оценивают разностную частоту сигнала ƒраз2, выделяют составляющую сигнала на разностной частоте ƒраз2 и низкочастотную составляющую сигнала, получают их АЧС, полученные спектры сигналов сравнивают с заданными пороговыми значениями и по результатам сравнения принимают решение о виде принятого радиолокационного сигнала, согласно изобретению, дополнительно: если было принято решение о приеме ЛЧМ сигнала, то определяют низкочастотную огибающую составляющей сигнала на разностной частоте ƒраз2, по которой определяют длительность и период следования импульсов, определяют скорость изменения частоты внутри ЛЧМ импульса и ширину спектра ЛЧМ импульсов; если было принято решение о приеме простого сигнала, то по низкочастотной составляющей определяют длительность и период следования импульсов; если было принято решение о приеме ФКМ сигнала, то сигнал на удвоенной частоте подают на фазовую автоматическую подстройку частоты (ФАПЧ), формируют опорный сигнал и перемножают его с принятым сигналом после фильтрации, выделяют низкочастотную составляющую, по которой определяют закон чередования фаз, число дискретов, длительность и период следования импульсов, определяют длительность одного дискрета кода и ширину спектра ФКМ сигнала.
Сущность изобретения заключается в том, что если было принято решение о приеме ЛЧМ сигнала, то определяют низкочастотную огибающую составляющей сигнала на разностной частоте ƒраз2, по которой определяют длительность и период следования импульсов, определяют скорость изменения частоты внутри ЛЧМ импульса и ширину спектра ЛЧМ импульсов; если было принято решение о приеме простого сигнала, то по низкочастотной составляющей определяют длительность и период следования импульсов; если было принято решение о приеме ФКМ сигнала, то сигнал на удвоенной частоте подают на ФАПЧ, формируют опорный сигнал и перемножают его с принятым сигналом после фильтрации, выделяют низкочастотную составляющую, по которой определяют закон чередования фаз, число дискретов, длительность и период следования импульсов, определяют длительность одного дискрета кода и ширину спектра ФКМ сигнала.
Известно [Лихачев В.П., Веселков А.А., Нгуен Чонг Н. Характеристики обнаружения линейно-частотно-модулированных, фазо-кодо-манипулированных и простых радиоимпульсов в автокорреляционном приемнике // Радиотехника, 2018. №8, С. 71-76], что для определения вида принятого радиолокационного сигнала проверяют наличие или отсутствие АЧС низкочастотной составляющей, составляющей на разностной частоте результирующего сигнала после перемножения и аналогичных составляющих сигнала на удвоенной частоте после перемножения с его задержанной копией по заданному порогу. Учитывая результат определения вида сигнала используют различные процедуры обработки и определения частотно-временных параметров сигнала: для ЛЧМ сигнала определяют низкочастотную огибающую составляющей сигнала на разностной частоте ƒраз2, по которой определяют временные параметры ЛЧМ сигнала, зная оценку разностной частоты сигнала ƒраз2, значение времени задержки и значение длительности импульса определяют скорость изменения частоты внутри ЛЧМ импульса и ширину спектра ЛЧМ импульсов [Лихачев В.П., Семенов В.В., Веселков А.А. Экспериментальная апробация алгоритма определения частотно-временных параметров ЛЧМ-сигналов // Телекоммуникации, 2016. №5. С. 2-7]; для простого сигнала по низкочастотной составляющей, которая как и составляющая ЛЧМ-сигнала на разностной частоте ƒраз2 представляет собой простой радиоимпульс, определяют длительность и период следования импульсов; для ФКМ сигнала подают сигнал на удвоенной частоте на ФАПЧ, формируют опорный сигнал и перемножают его с принятым сигналом после фильтрации, выделяют низкочастотную составляющую сигнала, по которой определяют закон чередования фаз, число дискретов, длительность и период следования импульсов, зная число дискретов и длительность импульса определяют длительность одного дискрета кода и ширину спектра ФКМ сигнала. Этим достигается указанный в изобретении технический результат.
Способ анализа сложных сигналов в АКП может быть реализован, например, с помощью устройства, схема которого приведена на чертеже, где обозначено: 1 - полосовой фильтр; 2 - умножитель частоты; 3 - линия задержки; 4 - перемножитель; 5 - фильтр низких частот; 6 - блок получения спектра, предназначен для получения спектра ЛЧМ, ФКМ и простых радиоимпульсов; 7 - пороговое устройство; 8 - блок принятия решения; 9 - ключ; 10 - измеритель частотно-временных характеристик сигнала; 11 - детектор огибающей; 12 - ФАПЧ. Измеритель 10.1, предназначен для определения частотно-временных характеристик ЛЧМ сигнала. Измеритель 10.2, предназначен для определения временных характеристик простого сигнала. Измеритель 10.3, предназначен для определения частотно-временных характеристик ФКМ сигнала. Назначение остальных элементов устройства ясны из их названий.
Устройство работает следующим образом: принятый сигнал поступает на вход полосового фильтра 1.1 с полосой пропускания ΔƒВЧ которая может быть, задана, например, предельной шириной спектра сигналов радиоэлектронных систем в заданном частотном диапазоне РТМ [Радиоэлектронные системы; Основы построения и теория. Справочник. / Под ред. Я.Д. Ширмана. - М.: Радиотехника, 2007. - с. 297]. Выделенный сигнал задерживается в линии задержки на время, определяемое как и перемножается с его задержанной копией. Полосовым фильтром 1.2, выделяется составляющая сигнала на разностной частоте ƒраз1 (может быть оценена, например, по максимальной составляющей спектра сигнала в диапазоне частот [ƒp min ƒp max], который определяется минимальным и максимальным значениями скорости изменения частоты внутри ЛЧМ импульса). Для простого сигнала полученная составляющая сигнала близка к нулю. Низкочастотным фильтром 5.1 выделяется низкочастотная составляющая на выходе перемножителя 4.1, которая близка к нулю для ЛЧМ сигнала. Сигнал на выходе полосового фильтра 1.1 подается на вход умножителя частоты 2, где удваивается частота сигнала, производится задержка сигнала в линии задержки на время, определяемое как и перемножение сигнала с его задержанной копией. Полосовым фильтром 1.3, выделяется составляющая сигнала на разностной частоте ƒраз1 (может быть оценена аналогично ƒраз1). Для простого сигнала и ФКМ сигнала полученная составляющая близка к нулю. Низкочастотным фильтром 5.2 выделяется низкочастотная составляющая на выходе перемножителя 4.2, которая близка к нулю для ЛЧМ сигнала. Для сигналов на выходе фильтров 1.2, 5.1, 1.3, 5.2 получают АЧС, максимальные значения которых сравниваются в пороговых устройствах 7.1, 7.2, 7.3 и 7.4 соответственно. Пороговое значение GП может быть определено, например, по критерию Неймана-Пирсона при заданной вероятности ложной тревоги и вероятности правильного обнаружения [Смирнов Ю.А. Радиотехническая разведка - М.: Воениздат, 2001. - с. 237-240]. Принятые в пороговых устройствах 7.1, 7.2, 7.3, 7.4 решения подаются на первый, второй, третий и четвертый входы блока принятия решения 8. Блок принимает решение о виде принятого сигнала [Лихачев В.П., Веселков А.А., Нгуен Чонг Н. Характеристики обнаружения линейно-частотно-модулированных, фазо-кодо-манипулированных и простых радиоимпульсов в автокорреляционном приемнике // Радиотехника, 2018. №8, С. 71-76].
Если принято решение о приеме ЛЧМ сигнала, то на первом выходе блока принятия решения 8 появляется сигнал, по которому включается работа измерителя 10.1. Детектором огибающей 11, выделяется низкочастотная огибающая составляющей сигнала на разностной частоте ƒраз2, которая поступает на вход измерителя 10.1, по которой определяются длительность импульса (например, по максимуму линейной свертки низкочастотной огибающей с серией прямоугольных импульсов (ПИ)) и период следования импульсов [Лихачев В.П., Семенов В.В., Веселков А.А. Экспериментальная апробация алгоритма определения частотно-временных параметров ЛЧМ-сигналов // Телекоммуникации, 2016. №5. С. 2-7], зная оценку разностной частоты сигнала ƒpaз2, значение времени задержки и значение длительности импульса определяются скорость изменения частоты внутри ЛЧМ импульса и его ширина спектра [Купряшкин И.Ф., Лихачев В.П., Семенов В.В., Ложкин А.Л. Поляриметрические и интерферометрические режимы работы РЛС с синтезированной апертурой антенны в условиях помех: Монография. - Воронеж: ВУНЦ ВВС «ВВА», 2015. - с. 173, 174].
Если со второго выхода блока принятия решения 8 на ключ 9.1 подается решение, что принят только простой сигнал или приняты простой сигнал и ЛЧМ сигнал, то ключ включает работу измерителя 10.2. В измерителе определяются длительность импульса (аналогично измерителю 10.1, например, по максимуму линейной свертки низкочастотной составляющей сигнала на выходе фильтра 5.1 с серией ПИ) и период следования импульсов [Лихачев В.П., Семенов В.В., Веселков А.А. Экспериментальная апробация алгоритма определения частотно-временных параметров ЛЧМ-сигналов // Телекоммуникации, 2016. №5. С. 2-7].
Если с третьего выхода блока принятия решения 8 на ключ 9.2 подается решение, что принят только ФКМ сигнал, то ключ включает работу измерителя 10.3. Сигнал на удвоенной частоте поступает на вход ФАПЧ 12, работающей на удвоенной частоте [Зимарин В.И., Илларионов Б.В., Козирацкий А.Ю., Козлов С.В. Устройства приема и обработки сигналов / Учебник. - Воронеж: ВУНЦ ВВС «ВВА», 2015. - с. 197, 198]. Опорный сигнал на выходе ФАПЧ перемножается с сигналом на выходе фильтра 1.1. Низкочастотным фильтром 5.3, выделяется низкочастотная составляющая сигнала на выходе перемножителя 4.3, по которой в измерителе 10.3 определяется закон чередования фаз ФКМ сигнала: если амплитуда принятого сигнала на выходе фильтра 5.3 больше нуля, то передан символ 0, если меньше нуля, то передан символ 1. Затем определяются число дискретов, длительность импульса (аналогично измерителю 10.1, например, по максимуму линейной свертки низкочастотной составляющей на выходе фильтра 5.3 с серией ПИ) и период следования импульсов [Лихачев В.П., Семенов В.В., Веселков А.А. Экспериментальная апробация алгоритма определения частотно-временных параметров ЛЧМ-сигналов // Телекоммуникации, 2016. №5. С. 2-7], зная число дискретов и длительность импульса определяются длительность одного дискрета кода и ширина спектра ФКМ сигнала [Смирнов Ю.А. Радиотехническая разведка - М.: Воениздат, 2001. - с. 124, 137].
Таким образом, в предлагаемом способе анализа сложных сигналов в АКП новыми существенными признаками изобретения являются вновь введенные процедуры обработки радиолокационных сигналов после определения их вида.
Предложенное техническое решение является новым, поскольку из общедоступных сведений неизвестны способы, позволяющие после распознавания ЛЧМ, ФКМ и простых радиоимпульсов, имеющих несущие частоты в полосе пропускания входного фильтра определить их частотно-временные параметры при приеме отдельно ЛЧМ, ФКМ или простых радиоимпульсов, при одновременном приеме ЛЧМ и простых радиоимпульсов, а также позволяющие в случае одновременного приема ЛЧМ и ФКМ или ЛЧМ, ФКМ и простых радиоимпульсов определить частотно-временные параметры ЛЧМ сигнала.
Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы стандартные радиоэлектронные устройства и средства. Например, полосовой фильтр 1.1 может быть реализован как волновой аналоговый фильтр (ВАФ); полосовые фильтры 1.2 и 1.3, фильтры низких частот 5.1-5.3 могут быть реализованы как фильтры на поверхностных акустических волнах (ПАВ) или фильтры на резонаторах [Улахович Д.А. Основы теории линейных электрических цепей: Учеб. пособие. - СПб.: БХВ-Петербург, 2009. - с. 586-603, 746-780]. Блоки получения спектра 6.1 - 6.4 можно реализовать на основе аналого-цифрового преобразователя (АЦП) и программируемой логической интегральной схемы (ПЛИС), или с использованием спектроанализатора; блок принятия решения 8, ключи 9.1 и 9.2 можно реализовать в аналоговом виде на основе набора логических элементов И, НЕ, или в цифровом виде с использованием микроконтроллера. Измерители частотно-временных параметров 10.1 - 10.3 можно реализовать в цифровом виде с использованием микроконтроллера или ПЛИС.
название | год | авторы | номер документа |
---|---|---|---|
Способ определения параметров частотно-кодированных сигналов в автокорреляционном приемнике | 2019 |
|
RU2726221C1 |
Способ определения видов радиолокационных сигналов в автокорреляционном приемнике | 2019 |
|
RU2716017C1 |
Способ определения параметров частотно-кодированных сигналов в автокорреляционном приемнике | 2019 |
|
RU2726188C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВИДОВ РАДИОЛОКАЦИОННЫХ СИГНАЛОВ В АВТОКОРРЕЛЯЦИОННОМ ПРИЕМНИКЕ | 2018 |
|
RU2683791C1 |
СПОСОБ ОБРАБОТКИ ЛИНЕЙНО-ЧАСТОТНО-МОДУЛИРОВАННЫХ СИГНАЛОВ МНОГОКАНАЛЬНЫМ АВТОКОРРЕЛЯЦИОННЫМ ПРИЕМНИКОМ | 2018 |
|
RU2698579C1 |
СПОСОБ РАДИОЛОКАЦИИ | 2023 |
|
RU2804395C1 |
СПОСОБ СКРЫТНОЙ РАДИОТЕХНИЧЕСКОЙ НАВИГАЦИИ | 2021 |
|
RU2775645C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЛЧМ СИГНАЛОВ | 2014 |
|
RU2578041C1 |
Способ классификации сигналов | 2022 |
|
RU2789386C1 |
РАДИОДАЛЬНОМЕР | 2000 |
|
RU2197000C2 |
Изобретение относится к области радиотехники, в частности к способам и технике радиотехнического мониторинга источников радиоизлучений. Технический результат, на достижение которого направлено заявляемое изобретение, выражается в повышении точности определения параметров ЛЧМ, ФКМ и простых радиоимпульсов, имеющих несущие частоты в полосе входного высокочастотного фильтра приемника, при приеме отдельно ЛЧМ, ФКМ или простых радиоимпульсов, а также при одновременном приеме ЛЧМ и простых радиоимпульсов. Указанный технический результат достигается тем, что принятый сигнал фильтруют, задерживают на заданное время, перемножают сигнал с его задержанной копией, оценивают разностную частоту сигнала, выделяют составляющую сигнала на разностной частоте и низкочастотную составляющую сигнала, получают их амплитудно-частотные спектры (АЧС), частоту принятого сигнала после фильтрации удваивают, сигнал на удвоенной частоте задерживают на заданное время, перемножают его с задержанной копией, оценивают разностную частоту сигнала, выделяют составляющую сигнала на разностной частоте и низкочастотную составляющую сигнала, получают их АЧС, полученные спектры сигналов сравнивают с заданными пороговыми значениями и по результатам сравнения принимают решение о виде принятого радиолокационного сигнала, согласно изобретению дополнительно: если было принято решение о приеме ЛЧМ сигнала, то определяют низкочастотную огибающую составляющей сигнала на разностной частоте, по которой определяют длительность и период следования импульсов, определяют скорость изменения частоты внутри ЛЧМ импульса и ширину спектра ЛЧМ импульсов; если было принято решение о приеме простого сигнала, то по низкочастотной составляющей определяют длительность и период следования импульсов; если было принято решение о приеме ФКМ сигнала, то сигнал на удвоенной частоте подают на фазовую автоматическую подстройку частоты, формируют опорный сигнал и перемножают его с принятым сигналом после фильтрации, выделяют низкочастотную составляющую, по которой определяют закон чередования фаз, число дискретов, длительность и период следования импульсов, определяют длительность одного дискрета кода и ширину спектра ФКМ сигнала. В предлагаемом способе анализа сложных сигналов в автокорреляционном приемнике новыми существенными признаками изобретения являются вновь введенные процедуры обработки радиолокационных сигналов после определения их вида. 1 ил.
Способ анализа сложных сигналов в автокорреляционном приемнике, заключающийся в фильтрации и задержке принятого сигнала на заданное время, перемножении принятого сигнала с его задержанной копией, оценке разностной частоты сигнала, выделении составляющей сигнала на разностной частоте и низкочастотной составляющей сигнала, получении их амплитудно-частотных спектров (АЧС), удвоении частоты принятого сигнала после фильтрации, задержке сигнала на удвоенной частоте на заданное время, перемножении сигнала на удвоенной частоте с его задержанной копией, оценке разностной частоты сигнала, выделении составляющей сигнала на разностной частоте и низкочастотной составляющей сигнала, получении их АЧС, сравнении полученных спектров сигналов с заданными пороговыми значениями и принятии решения о виде принятого радиолокационного сигнала, отличающийся тем, что дополнительно: если было принято решение о приеме ЛЧМ сигнала, то определяют низкочастотную огибающую составляющей сигнала на разностной частоте, по которой определяют длительность и период следования импульсов, определяют скорость изменения частоты внутри ЛЧМ импульса и ширину спектра ЛЧМ импульсов; если было принято решение о приеме простого сигнала, то по низкочастотной составляющей определяют длительность и период следования импульсов; если было принято решение о приеме ФКМ сигнала, то сигнал на удвоенной частоте подают на фазовую автоматическую подстройку частоты, формируют опорный сигнал и перемножают его с принятым сигналом после фильтрации, выделяют низкочастотную составляющую, по которой определяют закон чередования фаз, число дискретов, длительность и период следования импульсов, определяют длительность одного дискрета кода и ширину спектра ФКМ сигнала.
ИЗМЕРИТЕЛЬ ДЕВИАЦИИ ЧАСТОТЫ | 1982 |
|
SU1840992A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЛЧМ СИГНАЛОВ | 2014 |
|
RU2578041C1 |
Устройство измерения параметров радиоимпульсов | 1976 |
|
SU656401A1 |
СПОСОБ РАСПОЗНАВАНИЯ РАДИОСИГНАЛОВ | 2003 |
|
RU2231118C1 |
US 20130128927 A1, 23.05.2013 | |||
JP 2003329765 A, 19.11.2003 | |||
СЕРГИЕНКО А.Б | |||
Цифровая обработка сигналов | |||
- СПб.: Питер, 2005 | |||
РОНКИН М.В | |||
и др | |||
Оценка частоты сигнала по короткой реализации в локационных системах с непрерывным излучением на |
Авторы
Даты
2020-07-17—Публикация
2018-10-15—Подача