Ингибитор коррозии и солеотложения Российский патент 2020 года по МПК C23F11/167 

Описание патента на изобретение RU2732844C1

Изобретение относится к ингибиторам коррозии, карбонатных, сульфатных и железоокисных отложений, может применяться для нормализации содержания ионов железа как в горячей, холодной водопроводной воде общего потребления, так и в системах водооборотного снабжения металлургических, химических и пищевых предприятий и других промышленных предприятий.

Известен ингибитор коррозии и солеотложения [Патент RU 2256727 C1, МПК C23F 11/167, 11/173, 14/02, заявка № 2003137235/02 от 23.12.2003, опубл. 20.07.2005 в Бюл. №20], включающий в себя фосфатный ингибитор, фосфонатный ингибитор, гигроскопические соли щелочных или щелочноземельных металлов неорганических кислот.

Схожие по действию и назначению продукты имеют ряд недостатков. Использование органических соединений, дозируемых в воду в виде составляющих компонентов являются негативными факторами для окружающей среды. В известных ингибиторах в качестве таких веществ встречаются бензотриазол, толилтриазол, оксиэтилидендифосфонат цинка, нитрилотриметилфосфонат, аскорбиновая кислота, глюконовая кислота [Патент RU 2458184 C1. МПК C23F 11/167, заявка № 2010150939/02 от 13.12.2010, опубл. 10.08.2012 в Бюл. № 22], оксиэтилидендифосфоновая кислота, аминоалканфосфоновая кислота, алкандифософоновая кислота, нитрилотриметилфосфоновая, фосфонобутантрикарбоновая кислота (ФБТК), фосфоногидроксиуксусная кислота, фосфоноянтарная кислота [Патент RU 2593569 C1. МПК C23F 11/167, C23C 22/42, заявка № 2015120937/02 от 03.06.2015, опубл.: 10.08.2016 в Бюл. № 22].

Недостатком известного ингибитора [Патент RU 2256727 C1, МПК C23F 11/167, 11/173, 14/02, заявка № 2003137235/02 от 23.12.2003, опубл. 20.07.2005 в Бюл. №20] является эффективность. На тонну обрабатываемой воды предполагается дозировка 60 г ингибитора.

Недостатком известного ингибитора также является наличие органических соединений, которые могут составлять до 40% массы.

Технический результат предполагаемого изобретения заключается в получении ингибитора коррозии и солеотложения в твердом состоянии, дозировка которого в системы водооборотного снабжения производственных предприятий, водоснабжения общего потребления ГВС и ХВС, составляет от 1 до 10 граммов на тонну обрабатываемой воды.

Технический результат достигается тем, что ингибитор, помимо того, что содержит полифосфат, гигроскопические соли щелочных и щелочноземельных металлов, в частности, ортофосфаты, сульфаты щелочных и щелочноземельных металлов, включает в свой состав гидрокарбонат, гипохлорит и фторид щелочных металлов, мас. %:

Полифосфат щелочных металлов 31,5÷88,9 Ортофосфат щелочных металлов 42,6÷6,53 Сульфат щелочных металлов 12,0÷3,25 Гидрокарбонат щелочных металлов 8,3÷1,27 Гипохлорит щелочных металлов 1,6÷0,01 Фторид щелочных металлов 4÷0,04

Известно, что для более надежной защиты металлов от коррозии предпочитают исключить галогены из растворов, как опасный элемент. Находясь в растворе в виде анионов, сами галогены не проявляют окислительных свойств, т.к. находятся уже в полностью восстановленном состоянии. Можно утверждать, что пагубное влияние на защитные окисные пленки на поверхности металлов в частности стальных поверхностей связано именно с солевым эффектом, сопровождающим многократное увеличение растворимости малорастворимых солей, которыми являются защитные окисные пленки. К таким окисным пленкам относятся ортофосфаты. Гидролиз фосфатов щелочных металлов проходит по аниону, значение водородного показателя смещается в сторону щелочной среды, что обеспечивает восстановление хлора в гипохлорит-ионе. К свойствам фторидов относится способность образовывать коллоиды, а также комплексные соединения с ортофосфат ионом и кальцием Ca5(PO4)3F [С29, С159 – Химия элементов и соединений : учебное пособие / В.И. Ермолаева, В.М. Горшкова, Л.Е. Слынько, Н.Н. Двуличанская. — Санкт-Петербург : Лань, 2019. — 208 с. — ISBN 978-5-8114-3291-2. — Текст : электронный // Электронно-библиотечная система «Лань» : [сайт]. — URL: https://e.lanbook.com/book/111880 (дата обращения: 25.09.2019). — Режим доступа: для авториз. пользователей]. На примере хлоридов было выявлено значение предельной концентрации, при которой не происходит коррозия. Значение предельной концентрации составляет 150 ммоль/л, что соответствует массе хлорид-ионов 5,3 г/л. [Кузнецова, О.П. Применение фосфоната кальция для пигментирования противокоррозионных покрытий // Казань : Вестник Казанского технологического университета. 2012. №8. Т15. С. – 38-39]. Таким образом, обуславливается использование фтор и хлор содержащих добавок для снижения солеотложения при эффективном ингибировании процессов коррозии. В отличие от известных ингибиторов коррозии, защиты нагревательных элементов от солеотложения настоящий ингибитор предлагает более экологически чистый состав.

Заявленное соотношение компонентов способствует уменьшению активности ионов кальция и гидрокарбонатов, что предотвращает выпадению в осадок карбоната кальция (см. таблицу 1) сохранение концентраций ионов кальция и гидрокарбонатов. Механизм процесса солеотложения заключается в том, что находящиеся в растворенном виде анионы гидрокарбоната в результате нагрева переходят в карбонаты и выпадают в осадок с катионами кальция, образуя малорастворимое соединение карбонат кальция. Изменение концентраций кальция и гидрокарбонатов до и после нагревания пропорционально количеству образующегося нерастворимого осадка карбоната кальция. Оптимальными для минимизации солеотложения будут такие условия, при которых не происходит уменьшение концентраций гидрокарбонатов и кальция при нагреве. Пробы 1, 2, 3 содержат ингибитор в дозировке 2 г ингибитора на 1 тонну обрабатываемой воды. Контрольная проба представлена водопроводной водой без растворенного ингибитора. При нагревании до температуры кипения концентрация кальция в контрольной пробе снизилась на 12,1 мг/л, а гидрокарбонатов на 45,2 мг/л. В пробах, содержащих ингибитор, понижение концентрации кальция на 50÷60% меньше, а значит выпадение осадка карбоната кальция в таких пробах пропорционально меньше. Вода для проб 1, 2, 3 и контрольной пробы отбиралась из одного источника единовременно. Химический состав проб используемого ингибитора указан в таблице 2.

Таблица 1 - Изменение концентраций ионов кальция и гидрокарбоната при нагревании   Изменение концентрации Ca2+ Изменение концентрации HCO3- Протоколы лабораторных испытаний «Центр гигиены и эпидемиологии в Кировской области» Контроль 12,1 мг/л 45,2 мг/л  №67642 от 05.11.2019, №67637 от 30.10.2019 Проба 1 4,9 мг/л -60% 36,5 мг/л -19%  №67642 от 05.11.2019, №67636 от 31.10.2019 Проба 2 6,1 мг/л -50% 36,5 мг/л -19% №67642 от 05.11.2019, №67639 от 31.10.2019 Проба 3 5,3 мг/л -56% 36,5 мг/л -19% №67642 от 05.11.2019, №67640 от 31.10.2019

Таблица 2 - Химический состав проб Компонент Проба №1 Проба №2 Проба №3 Полифосфат щелочных металлов 88,9 31,5 61,1 Ортофосфат щелочных металлов 6,53 42,6 23,52 Сульфат щелочных металлов 3,25 12 7,63 Гидрокарбонат щелочных металлов 1,27 8,3 4,78 Гипохлорит щелочных металлов 0,01 1,6 0,81 Фторид щелочных металлов 0,04 4 2,16

Похожие патенты RU2732844C1

название год авторы номер документа
ИНГИБИТОР КОРРОЗИИ 2010
  • Бусыгин Владимир Михайлович
  • Погребцов Валерий Павлович
  • Сафин Дамир Хасанович
  • Хасанова Диляра Ильгизовна
  • Макаров Геннадий Михайлович
  • Краснов Вячеслав Николаевич
RU2458184C1
ИНГИБИТОР КОРРОЗИИ И СОЛЕОТЛОЖЕНИЙ 2014
  • Бусыгин Владимир Михайлович
  • Шамсин Дамир Рафисович
  • Шавалиев Ильдар Флусович
  • Сафин Дамир Хасанович
  • Хасанова Диляра Ильгизовна
RU2580685C2
ИНГИБИТОР КОРРОЗИИ И СОЛЕОТЛОЖЕНИЯ (ВАРИАНТЫ) 2003
  • Ивонин Михаил Владимирович
  • Заволокин Василий Иванович
  • Шукайло Борис Николаевич
RU2256727C1
СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРА КОРРОЗИИ 2013
  • Бусыгин Владимир Михайлович
  • Шамсин Дамир Рафисович
  • Шавалиев Ильдар Флусович
  • Погребцов Валерий Павлович
  • Хасанова Диляра Ильгизовна
RU2519685C1
Состав органофосфонатов для стабилизационной обработки воды в системах водопользования 2020
  • Цирульникова Нина Владимировна
  • Дрикер Борис Нутович
  • Фетисова Татьяна Сергеевна
  • Кузнецов Юрий Иванович
  • Протазанов Афанасий Андреевич
RU2745822C1
Способ предотвращения солеотложений 1978
  • Мининков Николай Егорович
  • Маринин Николай Степанович
  • Ершов Виталий Александрович
  • Ярышев Геннадий Михайлович
  • Крамнюк Лидия Федоровна
  • Миронов Алексей Михайлович
  • Хлопонина Надежда Егоровна
  • Моисеева Елена Васильевна
SU729132A1
Состав для ингибирования солеотложений и коррозии в водных системах охлаждения 2024
  • Ковальчук Анатолий Анатольевич
RU2826352C1
ИНГИБИРОВАНИЕ ОБРАЗОВАНИЯ ОТЛОЖЕНИЙ С ИСПОЛЬЗОВАНИЕМ N-R-ИМИНО-БИС(МЕТИЛФОСФОНОВЫХ) КИСЛОТ И СПОСОБ ПОЛУЧЕНИЯ ИНГИБИТОРА 2016
  • Климов Олег Вячеславович
RU2656019C2
СОСТАВ ДЛЯ ЗАЩИТЫ ОТ БИООБРАСТАНИЯ, КОРРОЗИИ И СОЛЕОТЛОЖЕНИЯ 2013
  • Ефимов Константин Михайлович
  • Дитюк Александр Иванович
  • Богданов Алексей Игоревич
RU2541252C2
СПОСОБ ПОЛУЧЕНИЯ БИОРАЗЛАГАЕМОГО ИНГИБИТОРА СОЛЕОТЛОЖЕНИЙ 2015
  • Камагуров Семен Дмитриевич
  • Ковалева Наталья Евгеньевна
  • Ощепков Максим Сергеевич
  • Попов Константин Иванович
  • Рудакова Галина Яковлевна
RU2605697C1

Реферат патента 2020 года Ингибитор коррозии и солеотложения

Изобретение относится к ингибиторам коррозии, карбонатных, сульфатных и железоокисных отложений, и может применяться для нормализации содержания ионов железа как в горячей, холодной водопроводной воде общего потребления, так и в системах водооборотного снабжения металлургических, химических и пищевых предприятий и других промышленных предприятий. Ингибитор содержит, % мас.: фосфат щелочного металла 31,5-88,9; ортофосфат щелочного металла 42,6-6,53; сульфат щелочного металла 12,0-3,25; гидрокарбонат щелочного металла 8,3-1,27; гипохлорит щелочного металла 1,6-0,01; фторид щелочного металла 4,0-0,04. Технический результат: получение ингибитора коррозии и солеотложения в твердом состоянии, дозировка которого в системы водооборотного снабжения производственых предприятий, водоснабжения общего потребления ГВС и ХВС составляет от 1 до 10 граммов на тонну обрабатываемой воды. 2 табл.

Формула изобретения RU 2 732 844 C1

Ингибитор коррозии и солеотложения, включающий полифосфат, ортофосфат, сульфат щелочных металлов, отличающийся тем, что он дополнительно содержит гидрокарбонат, гипохлорит и фторид щелочных металлов при соотношении, % мас.:

полифосфат щелочного металла 31,5-88,9 ортофосфат щелочного металла 42,6-6,53 сульфат щелочного металла 12,0-3,25 гидрокарбонат щелочного металла 8,3-1,27 гипохлорит щелочного металла 1,6-0,01 фторид щелочного металла 4,0-0,04

Документы, цитированные в отчете о поиске Патент 2020 года RU2732844C1

ИНГИБИТОР КОРРОЗИИ И СОЛЕОТЛОЖЕНИЯ (ВАРИАНТЫ) 2003
  • Ивонин Михаил Владимирович
  • Заволокин Василий Иванович
  • Шукайло Борис Николаевич
RU2256727C1
ИНГИБИТОРЫ КОРРОЗИИ НА ОСНОВЕ ВОЛЬФРАМАТА 2009
  • Маерс Крейг У.
  • Хэтч Стивен Р.
  • Джонсон Дональд А.
  • Буреман Филлип И.
RU2509178C2
СПОСОБ ИНГИБИРОВАНИЯ КОРРОЗИИ В ВОДНЫХ СИСТЕМАХ 1993
  • Полуэктов П.Т.
  • Кривошеева Е.И.
  • Молодыка А.В.
  • Кращенко Г.В.
  • Матвеева Н.А.
  • Воробьев Е.В.
RU2038420C1
UA 20102 A, 25.12.1997.

RU 2 732 844 C1

Авторы

Владыкин Алексей Станиславович

Мурин Константин Андреевич

Бритвин Константин Михайлович

Даты

2020-09-23Публикация

2020-03-26Подача