ПРИМЕНЕНИЕ ИЗМЕРЕНИЯ ПОТРЕБНОСТИ В ВОДЕ ДЛЯ ВЫПОЛНЕНИЯ АППРОКСИМАЦИИ УДЕЛЬНОЙ ПЛОЩАДИ ПРИ ЦЕМЕНТИРОВАНИИ СКВАЖИНЫ Российский патент 2020 года по МПК E21B33/13 C04B7/36 

Описание патента на изобретение RU2733758C1

УРОВЕНЬ ТЕХНИКИ

В процессе цементирования скважин, например, при строительстве или ремонте скважин, обычно применяются цементные композиции. Эти композиции могут быть использованы в различных подземных применениях. Например, при строительстве подземной скважины колонна труб (например, обсадная колонна, хвостовики, расширяемые трубные элементы и т.д.) могут быть опущены в ствол скважины и зацементированы на месте. Процесс цементирования колонны труб на месте обычно называют «первичным цементированием». В типичном способе первичного цементирования цементная композиция может закачиваться в затрубное пространство между стенками ствола скважины и внешней поверхностью расположенной в стволе колонны труб. Цементная композиция может схватываться в кольцевом зазоре, образуя кольцевую оболочку из затвердевшего, по существу непроницаемого цемента (т.е. цементную оболочку), которая может поддерживать и удерживать на месте колонну труб в стволе скважины, и может связывать внешнюю поверхность колонны труб с подземным пластом. Помимо прочего, цементная оболочка, окружающая колонну труб, предотвращает миграцию флюидов в затрубном пространстве и защищает колонну труб от коррозии. Цементные композиции могут также использоваться в способах ремонтно-изоляционного цементирования, например, для герметизации трещин или отверстий в колоннах труб или цементных оболочках, для герметизации высокопроницаемых зон формации или трещин, для установки цементной пробки и тому подобных работ.

Особой проблемой при цементировании скважин является выработка удовлетворительных механических свойств в цементной композиции в течение разумного периода времени после ее размещения в подземном пласте. Зачастую тестируют несколько цементных композиций с различными добавками, чтобы определить, соответствуют ли они требованиям к материалам для конкретной скважины. Процесс выбора компонентов цементной композиции обычно осуществляется с помощью метода наилучшего предположения, используя предыдущие суспензии и модифицируя их, пока не будет найдено удовлетворительное решение. Этот процесс может занимать много времени, и получающаяся в результате суспензия может оказаться слишком дорогой. Более того, вяжущие компоненты, доступные в любом конкретном регионе, могут отличаться по составу от компонентов другого региона, что дополнительно усложняет процесс выбора правильной суспензии.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ

Приведенные графические материалы иллюстрируют некоторые аспекты некоторых вариантов реализации согласно настоящему изобретению, и их не следует использовать для ограничения или определения границ объема указанного изобретения.

На фиг. 1 проиллюстрирован график, демонстрирующий смоделированные результаты, применяемые для расчета индекса прочности на сжатие.

На фиг. 2 проиллюстрирована диаграмма, демонстрирующая смоделированные результаты, которые применяются для расчета индекса прочности на сжатие.

На фиг. 3 схематически проиллюстрирована система для анализа компонентов цемента, приведенная в качестве примера.

На фиг. 4 схематически проиллюстрирована система для получения цементных композиций, представленная в качестве примера.

На фиг. 5 схематически проиллюстрирован процесс введения цементной композиции в ствол скважины.

ПОДРОБНОЕ ОПИСАНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

Настоящее раскрытие в целом может относиться к способам и системам цементирования. В данном документе предоставлены способы идентификации и классификации источников кремнезема, цементов и других материалов на основе физико-химических свойств. В некоторых примерах измерения потребности в воде могут быть соотнесены с удельной площадью поверхности, что позволяет аппроксимировать удельную площадь поверхности цементного компонента. Физико-химические свойства каждого вяжущего компонента цементной композиции могут влиять на конечные механические свойства суспензии, а также на динамические или временные свойства, такие как смешиваемость, реология, вязкость и другие. Каждый вяжущий компонент может влиять на одно или несколько из упомянутых свойств. Например, в цементную композицию может быть добавлена летучая зола местного происхождения. Добавленная летучая зола может увеличить прочность на сжатие цементной композиции и может не влиять, например, на время сгущения цементной композиции. В другом регионе летучая зола местного происхождения может также увеличить прочность на сжатие цементной композиции, но также может привести к увеличению времени сгущения. Непредсказуемое поведение цементного состава может не быть реализовано до тех пор, пока не будет проведено несколько лабораторных испытаний. Поскольку для измерения удельной площади поверхности может потребоваться специальное оборудование, которое не всегда может быть доступно, можно аппроксимировать удельную площадь поверхности путем измерения потребности в воде. Как только будет получена удельная площадь поверхности, может быть определена реакционная способность вяжущего компонента, на основе которой будет разрабатываться цементная композиция.

Цементные композиции обычно могут содержать воду и вяжущую добавку. Вяжущая добавка может содержать два или более вяжущих компонента, которые могут быть смешаны в сухом виде для образования вяжущей добавки до смешивания с водой. Альтернативно, вяжущие компоненты не могут быть объединены до смешивания с водой. Вяжущие компоненты обычно могут быть описаны как растворимые в щелочи. Хотя рассматривается ряд различных вариантов реализации изобретения, цементная композиция может содержать воду и вяжущую добавку, причем вяжущая добавка содержит гидравлический цемент и два или более источника кремнезема, таких как пыль цементной печи и природный пуццолан. Как описано более подробно в настоящем документе, цементные композиции могут быть вспенены и/или расширены по желанию специалистов в данной области техники.

Цементные композиции могут иметь плотность, подходящую для конкретного применения. Цементные композиции могут иметь плотность в диапазоне от около 0,96 кг/л (8 фунтов на галлон («pounds per gallon - ppg»)) до около 1,9 кг/л (16 ppg). В примерах вспененные цементные композиции по настоящему изобретению могут иметь плотность в диапазоне от около 0,96 кг/л (8 ppg) до около 1,6 кг/л (13 ppg) (или даже меньше).

Вода, используемая в цементных композициях, может представлять собой, например, пресную воду, соленую воду (например, воду, содержащую растворенную в ней одну или несколько солей), рассол (например, насыщенную соленую воду, добываемую из подземных пластов), морскую воду или их комбинации. Обычно вода может быть из любого источника при условии, что она не содержит избытка соединений, которые могут нежелательно влиять на другие компоненты в цементной композиции. Вода может содержаться в количестве, достаточном для получения поддающейся насосной перекачке суспензии. Вода может быть включена в цементные композиции в диапазоне от около 40% до около 200% по массе вяжущей добавки («by weight of cement components - bwoc»). В некоторых примерах вода может быть включена в количестве в диапазоне от около 40% до около 150% bwoc.

Вяжущая добавка может содержать два или более вяжущих компонента. Разнообразные гидравлические цементы могут быть использованы в соответствии с настоящим раскрытием, включая, но не ограничиваясь этим, цементы, содержащие кальций, алюминий, кремний, кислород, железо и/или серу, которые схватываются и затвердевают в результате реакции с водой. Подходящие гидравлические цементы могут включать, среди прочего, портландцементы, гипс и цементы с высоким содержанием глинозема. Портландцементы, которые подходят для использования в настоящем раскрытии, могут быть классифицированы как цементы классов A, C, G и H согласно Американскому нефтяному институту (American Petroleum Institute - API), Спецификация API для материалов и испытаний для скважинных цементов, Спецификация API 10, Пятое издание, 1 июля, 1990. Кроме того, в некоторых примерах цементы, подходящие для использования в настоящем изобретении, могут быть классифицированы как ASTM типа I, II, III или V. Цементные композиции, которые считаются «низко портландцементными», могут быть разработаны с помощью технологий, раскрытых в данном изобретении.

Там, где он присутствует, гидравлический цемент обычно может быть включен в цементные композиции в количестве, достаточном для обеспечения желаемой прочности на сжатие, плотности и/или стоимости. Гидравлический цемент может присутствовать в цементных композициях в любой подходящей концентрации, в том числе в количестве в диапазоне от около 0% до около 99% bwoc. Гидравлический цемент может присутствовать в количестве, варьирующемся между любым из и/или включая любое из около 1% bwoc, около 5% bwoc, около 10% bwoc, около 20% bwoc, около 40% bwoc, около 60% bwoc, около 80% bwoc или около 90% bwoc. Вяжущий компонент может считаться «низко портландцементным» в том смысле, что портландцемент (если он используется) может присутствовать в цементной композиции в количестве около 40% или менее bwoc и, альтернативно, около 10% или менее bwoc. Могут быть созданы цементные композиции, которые не содержат (или практически не содержат) портландцемент. Специалисты в данной области техники с помощью этого раскрытия должны иметь возможность выбрать подходящее количество гидравлического цемента для конкретного применения.

В дополнение к портландцементу могут использоваться дополнительные вяжущие компоненты, которые можно считать растворимыми в щелочи. Вяжущий компонент считается растворимым в щелочи, если он хотя бы частично растворим в водном растворе с pH 7,0 или выше. Некоторые из растворимых в щелочи вяжущих компонентов могут содержать геополимерный цемент, который может содержать источник алюмосиликата, источник силиката металла и активатор. Геополимерный цемент может реагировать с образованием геополимера. Геополимер представляет собой неорганический полимер, который образует ковалентно связанные некристаллические сетки большой дальности. Геополимеры могут быть сформированы путем химического растворения и последующей повторной конденсации различных алюмосиликатов и силикатов с образованием трехмерной сети или трехмерного минерального полимера. Активатор может содержать, но не ограничивается ими, хлоридные соли гидроксидов металлов, такие как KCl, CaCl2, NaCl, карбонаты, такие как Na2CO3, силикаты, такие как силикат натрия, алюминаты, такие как алюминат натрия, и гидроксид аммония. Источник алюмосиликата может содержать любой подходящий алюмосиликат. Алюмосиликат представляет собой минерал, содержащий алюминий, кремний и кислород, а также противо-катионы. Потенциально существуют сотни подходящих минералов, которые могут быть источником алюмосиликата, поскольку они могут содержать алюмосиликатные минералы. Каждый источник алюмосиликата может потенциально использоваться в конкретном случае, если могут быть известны конкретные свойства, такие как состав. Некоторые минералы, такие как андалузит, кианит и силлиманит, представляют собой природные алюмосиликатные источники, имеющие одинаковый состав, Al2SiO5, но отличаются кристаллической структурой. Каждый минерал, андалузит, кианит или силлиманит, могут реагировать более или менее быстро и в разной степени при одинаковой температуре и давлении из-за различий кристаллических структур. Другие подходящие источники алюмосиликата могут содержать, но не ограничиваются этим, прокаленные глины, частично прокаленные глины, каолинитовые глины, латеритовые глины, иллитовые глины, вулканические породы, шахтные отходы, доменный шлак и угольную зольную пыль. Источник силиката металла может содержать любой подходящий силикат металла. Силикат представляет собой соединение, содержащее анионное соединение кремния. Некоторые примеры силиката включают ортосиликатный анион, также известный как анион тетроксида кремния, SiO44-, а также гексафторсиликат [SiF6]2-. Другие распространенные силикаты включают циклические и одноцепочечные силикаты, которые могут иметь общую формулу [SiO2+n]2n- и формирующие листья силикаты ([SiO2,5]-)n. Каждый пример силиката может иметь один или несколько катионов металлов, связанных с каждой молекулой силиката. Некоторые подходящие источники силикатов металлов могут содержать, но не ограничиваться ими, силикат натрия, силикат магния и силикат калия.

Там, где он присутствует, геополимерный цемент обычно может быть включен в цементные композиции в количестве, достаточном для обеспечения желаемой прочности на сжатие, плотности и/или стоимости. Геополимерный цемент может присутствовать в цементных композициях в любой подходящей концентрации, в том числе в количестве, находящемся в диапазоне от около 0% до около 99% bwoc. Геополимерный цемент может присутствовать в количестве, варьирующемся между любым из и/или включая любое из около 1% bwoc, около 5% bwoc, около 10% bwoc, около 20% bwoc, около 40% bwoc, около 60% bwoc, около 80% bwoc или около 90% bwoc. Специалисты в данной области техники с помощью этого раскрытия должны иметь возможность выбрать подходящее количество геополимерного цемента для конкретного применения.

Дополнительные вяжущие компоненты, которые растворимы в щелочи, могут содержать источник кремнезема. Источником кремнезема может быть любой подходящий материал, который обеспечивает кремнезем в цементной композиции. При включении источника кремнезема может быть использован другой путь для получения продукта, подобного портландцементу. Может быть вызвана пуццолановая реакция, в которой кремниевая кислота (H4SiO4) и портландит (Ca(OH)2 реагируют с образованием цементного продукта (гидрат силиката кальция). Если в источнике кремнезема присутствуют другие соединения, такие как алюминат, могут происходить дополнительные реакции с образованием дополнительных продуктов цемента, таких как гидраты алюмината кальция. Гидроксид кальция, необходимый для реакции, может быть получен из других вяжущих компонентов, таких как портландцемент, или может быть отдельно добавлен к цементной композиции. Примеры подходящих источников кремнезема могут включать летучую золу, шлак, кремнеземный пыль, кристаллический кремнезем, кремнеземную муку, пыль цементной печи (cement kiln dust - CKD), вулканическую породу, перлит, метакаолин, диатомовую землю, цеолит, сланец и золу сельскохозяйственных отходов (например, золу рисовой шелухи, золу сахарного тростника и золу багассы), среди прочего. Некоторые конкретные примеры источника кремнезема будут рассмотрены более подробно ниже. Там, где он присутствует, источник кремнезема обычно может быть включен в цементные композиции в количестве, достаточном для обеспечения желаемой прочности на сжатие, плотности и/или стоимости. Источник кремнезема может присутствовать в цементных композициях в любой подходящей концентрации, в том числе в количестве в диапазоне от около 0% bwoc до около 99% bwoc. Источник кремнезема может присутствовать в количестве, варьирующемся от любого и/или включая любое из около 1%, около 5%, около 10%, около 20%, около 40%, около 60%, около 80% или около 90% bwoc. Специалисты в данной области техники с помощью этого раскрытия должны иметь возможность выбрать подходящее количество источника кремнезема для конкретного применения.

Пример подходящего источника кремнезема может содержать летучую золу. Может быть подходящим множество летучей золы, включая летучую золу, классифицированную как летучая зола класса C и класса F в соответствии с Американским институтом нефти, Спецификация API для материалов и испытаний для скважинных цементов, Спецификация API 10, Пятое издание, 1 июля, 1990. Летучая зола класса C содержит как кремнезем, так и известь, поэтому она может образовывать затвердевшую массу при смешивании с водой. Летучая зола класса F, как правило, не содержит достаточного количества извести, чтобы вызвать цементирующую реакцию, поэтому нужен дополнительный источник ионов кальция для цементной композиции с задержкой схватывания, содержащей летучую золу класса F. При использовании известь может быть смешана с летучей золой класса F в любом подходящем количестве, в том числе в количестве в диапазоне от около 0,1% до около 100% по массе летучей золы. В некоторых случаях известь может представлять собой гашеную известь. Подходящие примеры летучей золы включают, но не ограничиваются ими, вяжущую добавку POZMIX® A, коммерчески доступную от Halliburton Energy Services, Inc., Хьюстон, Техас.

Другой пример подходящего источника кремнезема может содержать шлак. Шлак, как правило, является побочным продуктом при производстве различных металлов из соответствующих руд. Например, при производстве чугуна можно получить шлак в виде гранулированного побочного продукта доменной печи, причем шлак обычно содержит окисленные примеси, присутствующие в железной руде. Шлак, как правило, не содержит достаточного количества основного материала, поэтому можно использовать шлаковый цемент, который может дополнительно содержать основу для получения отверждаемой композиции, которая может реагировать с водой для схватывания с образованием затвердевшей массы. Примеры подходящих источников основ включают, но не ограничиваются ими, гидроксид натрия, бикарбонат натрия, карбонат натрия, известь и их комбинации.

Другой пример подходящего источника кремнезема может содержать CKD. В данном документе пыль цементной печи или «CKD» относится к частично кальцинированному материалу, загружаемому в печь, который обычно удаляют из газового потока и собирают в пылеулавливатель в процессе производства цемента. Как правило, при производстве цемента собирают большие количества CKD, которые обычно утилизируют как отходы. Утилизация CKD в виде отходов может обусловливать нежелательное удорожание производства цемента, а также экологические проблемы, связанные с ее захоронением. SKD является еще одним компонентом, который может быть включен в примеры цементных композиций.

Другой пример подходящего источника кремнезема может содержать вулканическую породу. Некоторые вулканические породы могут проявлять вяжущие свойства, поскольку они могут схватываться и затвердевать в присутствии гидратной извести и воды. Например, вулканическая порода также может быть измельчена. В общем случае вулканическая порода может иметь любое распределение частиц по размерам, в соответствии с конкретным применением. В некоторых вариантах реализации изобретения вулканическая порода может иметь средний размер частиц в диапазоне от около 1 мкм до около 200 мкм. Средний размер частиц соответствует значениям d50, измеренным анализаторами размера частиц, такими как произведенные компанией Malvern Instruments, Вустершир, Великобритания. При помощи данного описания, рядовые специалисты способны выбрать такой размер частиц, чтобы вулканическая порода была пригодна для использования в выбранном применении.

Другой пример подходящего источника кремнезема может содержать метакаолин. Как правило, метакаолин представляет собой белый пуццолан, который может быть получен путем нагревания каолиновой глины, например, до температур в диапазоне от около 600 °С до около 800 °С.

Другой пример подходящего источника кремнезема может содержать сланец. Среди прочего, сланец, включенный в цементные композиции, может реагировать с избытком извести с образованием подходящего вяжущего материала, например гидрата силиката кальция. Подходящими являются различные сланцы, включая те, которые содержат кремний, алюминий, кальций и/или магний. Пример подходящего сланца включает остеклованный сланец. В общем случае, сланец может иметь любое распределение частиц по размерам, в соответствии с конкретным применением. В определенных вариантах реализации сланец может иметь распределение частиц по размерам в диапазоне от около 37 микрометров до около 4750 микрометров.

Другой пример подходящего источника кремнезема может содержать цеолит. Цеолиты обычно представляют собой пористые алюмосиликатные минералы, которые могут быть природным или синтетическим материалом. Синтетические цеолиты основаны на структурном элементе того же типа, что и природные цеолиты, и могут содержать алюмосиликатные гидраты. Используемый в данном документе термин «цеолит» относится ко всем природным и синтетическим формам цеолита. Примеры цеолитов могут включать, но не ограничиваться им, морденит, zsm-5, цеолит x, цеолит y, цеолит a и т.д. Кроме того, примеры, содержащие цеолит, могут включать цеолит в комбинации с катионом, таким как Na+, K+, Ca2+, Mg2+ и т.д. Цеолиты, содержащие катионы, такие как натрий, могут также обеспечивать дополнительные источники катионов для цементной композиции по мере растворения цеолитов.

Цементные композиции могут дополнительно содержать гашеную известь. В данном документе термин «гашеная известь» обозначает гидроксид кальция. В некоторых вариантах реализации изобретения гашеная известь может поставляться как негашеная известь (оксид кальция), которая гидратируется при смешивании с водой, образуя гашеную известь. Гашеная известь может быть включена в примеры цементных композиций, например, для образования гидравлической композиции с источником кремнезема. Гашеная известь может быть включена в любой подходящей концентрации, включая, но не ограничиваясь этим, массовое отношение источника кремнезема к гашеной извести от около 10:1 до около 1:1 или от около 3:1 до около 5:1. Там, где она присутствует, гашеная известь может быть включена, например, в цементные композиции в количестве в диапазоне от около 10% до около 100% по массе источника кремнезема. Гашеная известь может присутствовать в количестве в диапазоне между любыми и/или включая значения около 10%, около 20%, около 40%, около 60%, около 80% или около 100% по массе источника кремнезема. При помощи данного описания специалисты в данной области техники должны определить подходящее количество используемой гашеной извести для выбранного применения.

Цементные композиции могут также содержать источник кальция, отличный от гашеной извести, который можно использовать дополнительно или вместо гашеной извести. Как правило, кальций и высокий pH, например, pH, составляющий 7,0 или выше, могут потребоваться для определенных вяжущих реакций. Потенциальное преимущество гашеной извести может заключаться в том, что ионы кальция и гидроксид-ионы находятся в составе одной молекулы. В другом примере источником кальция может быть Ca(NO3)2 или CaCl2 с гидроксидом, подаваемым, например, из NaOH или KOH. Специалист в данной области техники поймет, что альтернативный источник кальция и источник гидроксида могут быть включены в цементную композицию так же, как и гашеная известь. Например, источник кальция и источник гидроксида могут быть включены в любом подходящем количестве, включая, но не ограничиваясь этим, массовое отношение источника кремнезема к гашеной извести от около 10:1 до около 1:1 или соотношение около от 3:1 до 5:1. Там, где они присутствуют, альтернативный источник кальция и источник гидроксида могут быть включены, например, в цементные композиции в количестве в диапазоне от около 10% до около 100% по массе источника кремнезема. Альтернативный источник кальция и источник гидроксида могут присутствовать в количестве, варьирующемся между любым из и/или включая любое из около 10%, около 20%, около 40%, около 60%, около 80% или около 100% по массе источника кремнезема. Специалист в данной области техники, пользуясь преимуществом этого раскрытия, должен распознать соответствующее количество альтернативного источника кальция и источника гидроксида для включения в выбранное приложение.

Может быть определено целевое соотношение силикатной извести, а также идентифицирована добавка к цементу, содержащая два или несколько вяжущих компонентов, которые соответствуют соотношению кремнеземной извести. В некоторых примерах целевое соотношение силикатной извести может варьироваться от около 80/20 кремнезема к свободной извести по массе до около 60/40 кремнезема к свободной извести по массе, например, от около 80/20 кремнезема к свободной извести по массе, около 70/30 кремнезема к свободной извести по массе или около 60/40 кремнезема к свободной извести по массе. Соотношение силикатной извести может быть определено путем измерения доступного кремнезема и извести для данного компонента цемента.

Другие добавки, подходящие для использования в операциях цементирования, также могут быть включены в цементные композиции, когда это нужно для конкретного применения. Примеры таких добавок включают, но не ограничиваются ими: утяжелители, активаторы, легкие добавки, газообразующие добавки, добавки, улучшающие механические свойства, материалы для борьбы с поглощениями, добавки для контроля фильтрации, добавки для контроля потерь жидкости, пеногасители, пенообразователи, диспергаторы, тиксотропные добавки и комбинации вышеперечисленного. Специалисты в данной области техники с помощью этого раскрытия должны иметь возможность выбрать подходящее количество добавок для конкретного применения.

Как упоминалось ранее, чтобы определить, являются ли два или более из вышеупомянутых вяжущих компонентов совместимыми, могут быть проведены несколько лабораторных испытаний. Кроме того, могут остаться неизвестными любые потенциальные синергетические эффекты вяжущего компонента, если не выполнить несколько лабораторных испытаний. Как правило, известная цементная композиция может быть сначала составлена и испытана на такие свойства, как, например, прочность на сжатие в течение 24 часов, потеря флюида и время сгущения. Затем могут быть добавлены различные количества добавок в свежую партию цементных композиций, после чего испытания проводятся повторно. Собираются и сравниваются результаты каждого испытания. Затем можно выполнить новый набор испытаний с новыми концентрациями добавок, например, для коррекции свойств цементной композиции. Процесс испытания различных добавок в различных концентрациях может продолжаться в течение нескольких тестов, пока не будет составлена приемлемая цементная композиция или композиции. Приемлемая цементная композиция может представлять собой композицию, которая удовлетворяет определенным проектным требованиям, таким как прочность на сжатие, потеря флюида и время сгущения. Процесс проектирования цементной композиции может быть выполнен эвристическим способом, приводящим к цементной композиции, которая может иметь требуемые инженерные свойства, но может быть не оптимизирована по стоимости. Кроме того, источники кремнезема, такие как, например, CKD, ранее использовались либо в качестве чистых наполнителей, либо, в некоторых примерах, в качестве реакционноспособных компонентов, в цементных композициях на основе портландцемента. CKD вносит часть кремнезема для реакции, которая требует часть извести. В описанных выше способах составления цементного состава эвристический процесс не учитывает соотношение кремнезема и извести в композиции.

Описанный в данном документе способ может уменьшить или исключить эвристический поиск с помощью процесса, который идентифицирует вяжущие компоненты для использования в цементной композиции, посредством процесса измерения и классификации различных вяжущих компонентов, называемого картированием реакционной способности. Представление реакционной способности может включать несколько этапов. Один этап может включать измерение физических и химических свойств различных материалов с помощью стандартных испытаний. Другой этап может включать классификацию материалов путем анализа собранных данных и прогнозируемого влияния на свойства цементной суспензии. Еще один этап может включать использование данных для оценки реакционной способности материала, оптимизации характеристик цемента, математического прогнозирования механических свойств смеси на основании аналитических результатов и/или прогнозирования зависимости плотности цементной суспензии от прочности на сжатие.

Измерение физических и химических свойств каждого выбранного вяжущего компонента может включать в себя множество лабораторных методов и процедур, включая, но не ограничиваясь этим, микроскопию, спектроскопию, рентгеновскую дифракцию, рентгеновскую флуоресценцию, анализ размера частиц, анализ потребности в воде, сканирующую электронную микроскопию, энергодисперсионную рентгеновскую спектроскопию, оценку площади поверхности, анализ удельного веса, термогравиметрический анализ, морфологический анализ, инфракрасную спектроскопию, видимую в ультрафиолете спектроскопию, масс-спектроскопию, вторичную ионную масс-спектрометрию, электронно-энергетическую масс-спектрометрию, дисперсионную рентгеновскую спектроскопию, электронную оже-спектроскопию, анализ индуктивно связанной плазмы, термоионизационную масс-спектроскопию, масс-спектроскопию с тлеющим разрядом, рентгеновскую фотоэлектронную спектроскопию, проверку механических свойств, проверку модуля Юнга, реологические свойства, коэффициент Пуассона. Одно или несколько из предыдущих испытаний могут рассматриваться как испытания API, как указано в рекомендуемой практике API для тестирования скважинных цементов (опубликовано как рекомендуемая практика ANSI/API 10B-2). Дополнительные испытания API, конкретно не перечисленные выше, также могут использоваться для измерений. Могут быть измерены физические и химические свойства для группы вяжущих компонентов. Два или более из измеренных вяжущих компонентов могут быть различными типами вяжущих компонентов (например, вулканическая порода, CKD, летучая зола и т.д.). Два или несколько вяжущих компонентов могут быть одного типа, но из разных источников (например, вулканическая порода из источника 1, вулканическая порода из источника 2 и т.д.).

Дифракция рентгеновских лучей на порошке является одним из методов анализа, который может использоваться для измерения физических и химических свойств компонентов цемента. Дифракция рентгеновских лучей на порошке представляет собой метод воздействия на образец рентгеновских лучей, нейтронов или электронов и измерения величины межатомной дифракции. Образец действует на дифракционную решетку, создавая различный сигнал под разными углами. Типичными свойствами, которые могут быть измерены, являются идентификация фазы для выполнения определения и характеристики кристаллического твердого вещества. Другими свойствами могут быть кристалличность, параметры решетки, тензоры расширения, объемный модуль и фазовые переходы.

Рентгеновская флуоресценция это еще один метод анализа, который можно использовать для измерения физических и химических свойств вяжущих компонентов. Рентгеновская флуоресценция может использовать коротковолновое рентгеновское излучение для ионизации атомов в образце, тем самым вызывая их флуоресценцию при определенных характерных длинах волн. Характерное излучение, испускаемое образцом, может позволить точно идентифицировать атомы компонентов в образце, а также их относительные количества.

Анализ размера частиц является еще одним методом анализа, который может использоваться для измерения физических и химических свойств вяжущих компонентов. Анализ размера частиц может быть выполнен посредством анализа различными лабораторными методами, включая, но не ограничиваясь этим, лазерную дифракцию, динамическое рассеяние света, статический анализ изображения и динамический анализ изображения. Анализ размера частиц может также предоставить информацию о морфологии конкретного образца. Морфология может включать такие параметры, как сферичность и округлость, а также общую форму частицы, такую как диск, сфероид, лопасть или валик. Зная морфологию и размер частиц, можно оценить среднюю площадь поверхности и объем. Площадь поверхности и объем могут быть важны при определении потребности в воде, а также реакционной способности. В общем, частицы с относительно меньшим размером могут реагировать быстрее, чем частицы с относительно большими размерами. Также относительно меньший размер частиц может приводить к большей потребности в воде для полной гидратации, чем относительно больший размер частиц.

Энергодисперсионная рентгеновская спектроскопия является еще одним методом анализа, который может использоваться для измерения физических и химических свойств вяжущих компонентов. Энергодисперсионная рентгеновская спектроскопия - это аналитическая методика, используемая для анализа элементов, присутствующих в образце, и определения химической характеристики образца. Другие методы могут включать инфракрасную спектроскопию с преобразованием Фурье, спектроскопию в видимой ультрафиолетовой области, масс-спектроскопию, масс-спектрометрию с вторичными ионами, масс-спектрометрию с энергией электронов, дисперсионную рентгеновскую спектроскопию, электронную оже-спектроскопию и рентгеновскую фотоэлектронную спектроскопию.

Вяжущие компоненты могут быть проанализированы для определения их потребности в воде. Потребность в воде обычно определяется как количество воды для смешивания, которое требуется добавить в порошкообразный твердый материал для образования суспензии определенной консистенции. Консистенция может варьироваться для конкретного применения. В следующем примере методы определения потребности в воде удерживают постоянство и количество воды постоянными при изменении количества твердого материала. Тем не менее, могут также применяться методы, которые изменяют количество воды, консистенцию и/или количество твердого материала в любой комбинации. Следующая методика также оценивает указанную консистенцию на основе размера вихря на поверхности смеси в смесителе. Потребность в воде для конкретного вяжущего цементного может быть определена с помощью процесса, который включает в себя: a) подготовку смесителя (например, смеситель Waring®) с определенным количеством воды (например, от около 100 грамм до около 500 грамм), b) перемешивание воды при определенных оборотах смесителя (например, 4000-15000 об/мин), c) добавление исследуемого порошкообразного твердого вещества к воде до получения определенной консистенции и d) расчет потребности в воде на основе отношения воды к твердым веществам, необходимого для получения желаемой консистенции. Конкретный пример определения потребности в воде может включать, но не ограничивается: 1) подготовкой смесителя (например, смеситель Waring®) с указанным количеством воды (например, от около 100 грамм до около 500 грамм или около 200 грамм в одном примере); 2) перемешиванием воды при определенных оборотах смесителя (например, от около 4000 об/мин до около 15000 об/мин или около 12000 об/мин в одном примере); 3) добавлением к воде определенного количества (например, от около 1 грамма до около 1000 грамм или около 400 грамм в одном примере) вяжущего компонента; 4) наблюдение за смесью, чтобы определить, получена ли указанная консистенция, например, вяжущий компонент может считаться полностью влажным и смешанным, если диаметр вихря, образующегося на поверхности смеси в смесителе, составляет от около 0 дюймов (0 мм) до около 2 дюйм (50 мм) или от около 0,004 дюймов (0,1 мм) до около 1 дюйма (25 мм); 5) если желаемая консистенция не получена, добавка большего количества вяжущего компонента, пока желаемая консистенция не будет получена, например, образовавшийся в смесителе вихрь имеет диаметр, примерно соответствующий диаметру монеты десять центов; и 6) расчет потребности в воде на основе отношения воды к вяжущего компоненту для получения желаемой консистенции. В некоторых примерах конкретная консистенция может иметь место, когда вихрь на поверхности смеси в смесителе имеет размер монеты 10 центов или около 0,7 дюйма (17,9 мм). Другие подходящие методы для определения потребности в воде также могут быть использованы, как будет понятно специалистам в данной области техники.

Вяжущие компоненты могут быть проанализированы для определения их удельной площади поверхности. Удельная площадь поверхности обычно относится к общей площади поверхности и может быть представлена как общая площадь поверхности на единицу массы. Значения, полученные для конкретной области, зависят от метода анализа. Среди всего могут использоваться любые подходящие методы анализа, включая, помимо прочего, методы, основанные на адсорбции, такие как анализ Брунауэра-Эммета-Теллера (Brunauer-Emmett-Teller - BET), окрашивание метиленовым синим, адсорбция моноэтилового эфира этиленгликоля и способ удержания белка.

Термогравиметрический анализ является еще одним методом анализа, который может использоваться для измерения физических и химических свойств вяжущих компонентов. Термогравиметрический анализ представляет собой метод термического анализа, в ходе которого могут быть оценены изменения физических и химических свойств образца. В общем случае свойства могут быть измерены как функция повышения температуры, например, с постоянной скоростью нагрева, или как функция времени с постоянной температурой или постоянным изменением массы. Свойства, определенные термогравиметрическим анализом, могут включать фазовые переходы первого порядка и фазовые переходы второго порядка, такие как испарение, сублимация, адсорбция, десорбция, абсорбция, хемосорбция, десольватация, дегидратация, разложение, реакции окисления и восстановления, ферромагнитный переход, сверхпроводящий переход и другие свойства.

В дополнение к определению физико-химических свойств самих вяжущих компонентов, могут также проводиться лабораторные испытания для определения свойств вяжущих компонентов в цементной композиции. Например, вяжущие компоненты могут быть проанализированы в цементной композиции для определения их прочности на сжатие и механических свойств. Например, предварительно выбранное количество вяжущего компонента может быть объединено с водой и известью (если это необходимо для схватывания). Затем можно определить механические свойства цементной композиции, в том числе прочность на сжатие, прочность на растяжение и модуль Юнга. Любое из множества различных условий может быть использовано для испытания, если совместимы условия различных вяжущих компонентов.

Прочность на сжатие в общем случае представляет собой способность материала или структуры выдерживать силы сдавливания, приложенные в осевом направлении. Прочность на сжатие вяжущего компонента может быть измерена в определенное время после того, как цементный компонент смешан с водой, и полученная цементная композиция поддерживается при определенных условиях температуры и давления. Например, прочность на сжатие может быть измерена за время в диапазоне от около 24 часов до около 48 часов (или дольше) после того, как флюид был смешан, и температура флюида поддерживается в диапазоне температур от 100 °F (38 °С) до около 200 °F (93 °С) и атмосферном давлении. Прочность на сжатие можно измерить либо разрушающим, либо неразрушающим способом. В разрушающем методе физически испытывают прочность образцов состава для обработки приствольной зоны в различных точках времени, разрушая образцы в машине для испытания на сжатие. Прочность на сжатие рассчитывают по разрушающей нагрузке, деленной на площадь поперечного сечения, выдерживающую указанную нагрузку, и записывают в единицах фунт-силы на квадратный дюйм (pound-force per square inch - psi). Неразрушающие методы обычно могут использовать ультразвуковой цементный анализатор («Ultrasonic Cement Analyzer - UCA»), предлагаемый компанией Fann® Instrument Company, Хьюстон, Техас. Прочность на сжатие может быть определена в соответствии с руководством API RP 10B-2, Recommended Practice for Testing Well Cements, первое издание, июль, 2005.

Прочность на растяжение обычно представляет собой способность материала противостоять нагрузкам, имеющим тенденцию удлинять материал, в отличие от прочности на сжатие. Прочность на растяжение вяжущего компонента может быть измерена в определенное время после того, как цементный компонент смешан с водой, и полученная цементная композиция поддерживается при определенных условиях температуры и давления. Например, прочность на растяжение может быть измерена за время в диапазоне от около 24 часов до около 48 часов (или дольше) после того, как флюид был смешан, и температура флюида поддерживается в диапазоне температур от 100°F (38 °С) до около 200°F (93 °С) и атмосферном давлении. Прочность на растяжение может быть измерена с использованием любого подходящего метода, включая, без ограничения, в соответствии с процедурой, описанной в ASTM C307. То есть образцы могут быть приготовлены в брикетных формах, имеющих вид галеты, с площадью поперечного сечения в один квадратный дюйм в середине. Затем можно приложить напряжение к увеличенным концам образцов, пока образцы не разорвутся в центральной области. Растяжение, выраженное в фунтах на квадратный дюйм, при котором разрушается образец, является пределом прочности на разрыв испытуемого материала.

Модуль Юнга, также называемый модулем упругости, является мерой отношения приложенного напряжения к результирующей деформации. Как правило, сильно деформируемый (пластичный) материал будет демонстрировать более низкий модуль при увеличении ограниченного напряжения. Таким образом, модуль Юнга представляет собой постоянную упругости, которая демонстрирует способность испытуемого материала выдерживать приложенные нагрузки. Ряд различных лабораторных методов может быть использован для измерения модуля Юнга флюида для обработки, содержащего вяжущий компонент, после того, как флюиду для обработки позволили отстояться в течение некоторого периода времени при определенных условиях температуры и давления.

Хотя могут быть упомянуты только некоторые избранные лабораторные методы, следует понимать, что может быть много аналитических методов, которые могут быть подходящими или не подходящими для определенного образца. Специалист в данной области техники с помощью этого раскрытия должен иметь возможность выбрать подходящую аналитическую методику для определения определенного свойства, представляющего интерес.

После того, как были применены аналитические методы к вяжущим компонентам, данные могут быть классифицированы и сопоставлены. Некоторые категории могут включать, но не ограничиваются ими, удельную поверхность, морфологию, удельный вес, потребность в воде и т.д. В некоторых примерах компоненты могут быть классифицированы по относительным количествам, включая количество по меньшей мере один из следующих компонентов: диоксид кремния, оксид алюминия, железо, железо, кальций, кальций, натрий, калий, магний, сера, их оксиды и их комбинации. Например, компоненты могут быть классифицированы на основе анализа оксидов, который включает в себя, без ограничения, содержание кремнезема, содержание оксида кальция и содержание оксида алюминия среди других оксидов, которые могут присутствовать в вяжущем компоненте. Кроме того, корреляции между вяжущими компонентами могут быть получены на основе категоризации данных. Например, различные категории свойств могут пересекаться. В некоторых примерах может быть представлена зависимость потребности в воде от удельной площади поверхности. Соответственно, потребность в воде вяжущего компонента может быть соотнесена с удельной площадью поверхности, так что удельная площадь поверхности является функцией потребности в воде. Удельную поверхность можно использовать для прогнозирования реакционной способности вяжущего компонента (или компонентов). Однако удельная площадь поверхности не всегда может быть доступна для каждого материала, так как для анализа удельной поверхности обычно требуется специальный инструмент. Соответственно, если потребность в воде может быть получена для вяжущего компонента, корреляция между потребностью в воде и удельной площадью поверхности может использоваться для получения аппроксимации для удельной площади поверхности, которая затем может использоваться для прогнозирования реакционной способности. Корреляция между потребностью в воде и удельной поверхностью может включать в себя, но не ограничиваясь этим, график потребности в воде в зависимости от удельной поверхности или уравнение, которое назначает вывод удельной площади поверхности на основе ввода потребности в воде. В дополнение к корреляциям между удельной поверхностью и реакционной способностью, корреляции также могут быть сделаны между удельной поверхностью и другими механическими свойствами, такими как прочность на растяжение и модуль Юнга.

Некоторые вяжущие компоненты, которые растворимы в щелочи, могут содержать восстановленные или природные материалы. Конкретно, кремнеземсодержащие вяжущие компоненты могут содержать материалы, такие как добытые материалы, например вулканические породы, перлит, отходы, такие как летучая зола и CKD, и сельскохозяйственный пепел, как описано ранее. В некоторых примерах вяжущий компонент, который растворим в щелочи, может оказывать синергетическое действие совместно с портландцементом, тогда как другие компоненты могут быть несовместимыми. В некоторых примерах вяжущий компонент, растворимый в щелочи, может вызывать гелеобразование, выделение большого количества тепла, задержку воды и другие эффекты. Эти и другие эффекты могут быть реализованы в процессе лабораторных испытаний вяжущего компонента в цементной композиции, содержащей портландцемент. Лабораторное оборудование может быть выполнено с возможностью обнаружения влияния вяжущего компонента на цементную композицию. В некоторых примерах оборудование, такое как калориметр, может измерять и количественно определять количество выделяемого тепла на единицу массы вяжущего компонента. Вискозиметры могут измерять увеличение гелеобразования, вызванное вяжущим компонентом. Каждый из физических эффектов, вызванных добавлением вяжущего компонента, может быть измерен при нескольких концентрациях и затем классифицирован, например, нанесен на график или представлен. После представления компонента эффект его добавления в цементную композицию можно предсказать, ссылаясь на категоризацию.

Как упоминалось ранее, некоторые вяжущие компоненты, которые растворимы в щелочи, могут вызывать гелеобразование при включении в цементную композицию. Хотя более высокая скорость гелеобразования может быть нежелательной в некоторых примерах, в других примерах более высокая скорость гелеобразования может быть преимущественной или необходимой для соответствия критериям технического проектирования. Обычно специалист в данной области техники выбирает подходящий гелеобразующий агент или загуститель для использования в цементной композиции. Используя преимущества представления, специалист в данной области должен иметь возможность выбирать вяжущий компонент, растворимый в щелочи, который может иметь двойное назначение. Например, вяжущий компонент может увеличить прочность на сжатие цементной композиции, но также усилить гелеобразование во время смешивания. Если критерии технического проектирования требуют более высокого гелеобразования во время смешивания, может быть выгодно включить вяжущий компонент, который увеличивает прочность на сжатие при одновременном увеличении гелеобразования. Включение вяжущего компонента, который проявляет множество эффектов, может уменьшить количество необходимых добавок, таких как гелеобразующие агенты или загустители, что может быть связано с большими затратами. Поскольку эффект гелеобразования компонента может быть представлен, количество компонента, включаемого в цементную композицию, может быть легко определено.

Другим потенциально полезным физическим эффектом, который может быть представлен, является диспергирующая способность. Некоторые вяжущие компоненты могут содержать относительно сферические частицы. Относительно сферические частицы могут оказывать эффект «подшипника качения» в цементной композиции с водой. Этот эффект может привести к тому, что другие компоненты в цементной композиции станут более мобильными, тем самым диспергируя компоненты в цементной композиции. Другим потенциально полезным физическим свойством, которое может быть представлено, является площадь поверхности. Площадь поверхности может относиться к плотности, при этом частица с относительно более высокой площадью поверхности может уменьшить плотность цементной композиции. Частицы, которые уменьшают плотность, можно использовать в качестве добавки с низкой плотностью. Другим потенциально выгодным эффектом, который может быть представлен, является размер частиц. Компоненты с относительно меньшими размерами частиц могут обладать способностью образовывать фильтрационную корку на границе пласта, тем самым блокируя выход цемента в пласт. Вяжущие компоненты с малым размером частиц могут быть использованы в качестве агента, контролирующего потери флюида. С помощью настоящего раскрытия специалист в данной области должен иметь возможность выбирать вяжущий компонент и представлять его свойства. Специалист в данной области также должен уметь выбрать вторичное свойство, представляющее интерес для вяжущего компонента, и с помощью представления создать суспензию с требуемыми свойствами.

Другим потенциальным преимуществом замены традиционных вяжущих добавок на вяжущие компоненты на основе кремнезема является снижение стоимости. Вяжущий компонент на основе кремнезема может частично или полностью заменить относительно более дорогую вяжущую добавку, как рассматривалось выше. Стоимость цементной композиции может быть оптимизирована путем уравновешивания необходимых инженерных параметров, таких как прочность на сжатие, способность к смешиванию, содержание свободной воды и другие, чтобы максимизировать количество относительно более дешевых вяжущих компонентов на основе кремнезема. Любое оставшееся отклонение от технических требований может быть «компенсировано» относительно более дорогой вяжущей добавкой. Таким образом, стоимость цементной композиции может быть уменьшена до минимальной стоимости за фунт, поскольку технические требования удовлетворяются за счет сочетания компонентов с более низкой стоимостью.

После того, как данные были собраны с помощью выбранных лабораторных методов, классифицированы и представлены, можно выполнить несколько операций с данными, чтобы получить прогнозы относительно цементной композиции, которая содержит представленные вяжущие компоненты. Например, могут быть оценены свойства схватывания. Способ оценки реакционной способности материала на основе индекса реакционной способности будет описан ниже. Реакционная способность материала может быть основана на многих параметрах, таких как удельная площадь поверхности и удельная масса, среди других. Другое использование представленных данных может заключаться в оптимизации характеристик цементной суспензии на основе таких параметров, как форма частиц, размер частиц и реакционная способность частиц. Данные также могут быть использованы для прогнозирования и захвата зависимости плотности цементной суспензии от прочности на сжатие и использования полученных данных для разработки оптимизированных цементных композиций. Данные также могут быть использованы для прогнозирования состава суспензии для достижения оптимального состава цемента. Критериями правильности могут быть прочность на сжатие, стоимость, реология, механические свойства, свойства контроля потери жидкости, время сгущения и другие свойства.

Представление реакционной способности может использоваться для оценки различных механических свойств вяжущего компонента, в том числе прочности на сжатие, прочности на растяжение и модуля Юнга. Как описано выше, могут быть выполнены корреляции между удельной площадью поверхности и определенными механическими свойствами, такими как реакционная способность, предел прочности и модуль Юнга. Используя эти соотношения, можно прогнозировать механические свойства вяжущие компонента или комбинации вяжущих компонентов.

Одним из методов, который можно использовать для корреляции реакционной способности и удельной площади поверхности, является индекс реакционной способности. Не ограничиваясь теорией, индекс реакционной способности вяжущего компонента может упоминаться как мера реакционной способности вяжущего компонента с поправкой на различия в площади поверхности. Важно отметить, что термин «вяжущий компонент» относится к любому материалу, который является вяжущим при смешивании с водой и/или известью и суспендирующим агентом, когда это необходимо, так что суспензия является стабильной. «Индекс вяжущей реакционной способности» (cementitious reactive index - CRI) можно определить, но не ограничиваясь, уравнением [1] следующим образом:

, [1]

где:

CSi неограниченная предельная прочность на сжатие (ultimate compressive strength - UCS), полученная из образцов, затвердевших при определенной эталонной температуре, давлении и возрасте;

ρi плотность суспензии, которая была подготовлена и отверждена для измерения UCS;

SSAPSDi удельная поверхность, полученная с помощью типичных методов анализа размера частиц.

«Физико-химический индекс» (physicochemical index - PCI) вяжущего компонента может быть определен, но не ограничен уравнением [2]:

, [2]

где:

BETSAi площадь поверхности, полученная методом адсорбции азота на вяжущем компоненте i;

SGi удельный вес вяжущего компонента i;

D50 среднемассовый или объемный средний диаметр гранулометрического состава вяжущего компонента i;

СSi массовая концентрация оксида кремния в компоненте i;

CCa массовая концентрация оксида кальция в компоненте i;

CAl массовая концентрация оксида алюминия в компоненте i;

CNa массовая концентрация оксида натрия в компоненте i;

CFe массовая концентрация оксида железа в компоненте i.

Следует отметить, что массовые концентрации, указанные выше и в данном случае, могут быть измерены, но не ограничиваются методами измерения рентгеновской флуоресцентной спектроскопии, а ссылка на «компонент i» эквивалентна «вяжущему компоненту i». Функции в уравнениях [1] и [2], которые определяют CRIi и PCIi, при правильном определении приводят к тому, что следующие универсальные отношения могут сохраняться для широкого круга вяжущих материалов, таких как, помимо прочего, портландцементы; летучая зола; другие пуццолановые материалы; другой пепел; и т.п.

[3]

На фиг. 1 проиллюстрирован график уравнения [1] в сравнении с уравнением [2], демонстрирующий точность уравнений [1], [2] и [3] применительно к пяти различным типам источников вяжущего материала и трем образцам аналогичных материалов, но взятых из разных источников. Было обнаружено, что смоделированные данные имеют отношение y=36,252×0,2256, при этом R2=0,9406.

В некоторых примерах уравнение [3] может быть степенным законом, таким как в уравнении 4.

[4]

А и В являются коэффициентами, которые могут быть уникальными для различных видов и источников выбранных вяжущих материалов. Как только обобщенная функция, заданная в уравнении [4], определена для данной совокупности или группы вяжущих компонентов, линейное или нелинейное соотношение суммирования, дополнительно определенное ниже, может использоваться в сочетании с уравнением [5] для прогнозирования UCS различных комбинаций вяжущих материалов для заданных плотностей суспензии, температур, давлений и времени отверждения.

, [5]

где

CRIc определяется как CRI для уникальной комбинации n вяжущих компонентов в качестве композита, и аналогично

PCIc определяется как физико-химический индекс для композита.

Данный композит с массой mc определен в следующем виде:

, [6]

где: fi определяется как массовая доля вяжущего компонента i, а n общее количество независимых вяжущих компонентов. Как только функция определена в уравнении [5], тогда композитное значение физико-химического индекса реакционной способности может быть вычислено с использованием уравнения [7] следующим образом:

. [7]

Где: PCIc определяется как общий индекс реакционной способности для смеси из n уникально независимых компонентов, а fi определяется как массовая доля вяжущего компонента i, а n общее количество независимых вяжущих компонентов. Как только PCIc определен для конкретной предполагаемой смеси выбранных вяжущих компонентов, линейные или нелинейные суммы (уравнения [8] и [9]) определяются для следующих условий:

[8]

и,

. [9]

PCIc используется для вычисления значения CRIc с использованием либо уравнения [5], либо более обобщенной формы уравнения [3] для композитных терминов. Как только значение CRIc определено для данной композитной смеси, тогда композитные значения ρc и могут использоваться вместе с уравнением [10] для прогнозирования фактической прочности на сжатие композитной смеси CSc.

[10]

Экспериментальные данные были собраны для конкретных композитных смесей и суммированы в таблице ниже:

Таблица 1

Массовые доли вяжущих компонентов Вяжущий компонент Композитная смесь 1 Композитная смесь 2 Композитная смесь 3 A 0,36 0,53 B 0,32 C 0,32 0,31 D 0,33 E 0,32 F 0,35 G 0,16 Итог 1,00 1,00 1,00

Важно отметить, что каждый из вышеупомянутых вяжущих компонентов был либо явно отличным видом (типом) цементной композиции, и/или получен из другого источника.

На фиг. 2 проиллюстрирован другой график уравнения [1] по сравнению с уравнением [2], демонстрирующий точность уравнений [1], [2] и [3]. Уравнения [1]-[10] также могут использоваться для прогнозирования других механических свойств, включая, но не ограничиваясь, модуль упругости Юнга и предел прочности при растяжении. Кроме того, следует отметить, что, хотя метод «линейного суммирования» был представлен в предыдущей разработке, это изобретение также включает другие методы, такие как метод нелинейного суммирования, представленный в уравнении [11].

, [11]

где: ai это показатели, которые определены для уникального набора вяжущих компонентов.

Далее будут обсуждаться дополнительные примеры, использующие индекс реакционной способности, потребность в воде и другие аналитические параметры. Может быть сгенерирована статистическая таблица, которая отображает индекс реакционной способности в зависимости от потребности в воде. Пример проиллюстрирован в таблице 2.

Таблица 2. Индекс реакционной способности в зависимости от потребности в воде

Потребность в воде Высокий X1 X4, X5 X8 Средний X2 X6 X9, X10 Низкий X3 X7 X11…Xn Низкий Средний Высокий Индекс реакционной способности

Также могут быть использованы другие аналитические параметры, такие как связь между размером частиц в зависимости от индекса реакционной способности, тепловыделение в зависимости от индекса реакционной способности и другие подобные параметры. Путем ранжирования индекса реакционной способности по аналитическому параметру может быть выбрана смесь компонентов, которая имеет минимизированную стоимость и оптимизированный индекс реакционной способности, причем все еще имеет смешиваемый состав. В некоторых примерах выбранная цементная композиция может иметь слишком много свободной воды, препятствующей корректному схватыванию. В таких примерах компонент, имеющий большую потребность в воде, может быть выбран для замены компонента в цементной композиции или дополнения цементной композиции. Выбранный компонент, имеющий высокую потребность в воде, может быть выбран на основе индекса реакционной способности, чтобы гарантировать, что общая смесь имеет достаточную реакционную способность. Цементная композиция, содержащая выбранный вяжущий компонент, может демонстрировать меньше свободной воды из-за высокой потребности в воде для компонента, а также может демонстрировать такую же реакционную способность при выборе соответствующего индекса реакционной способности. Реакционная способность цементной композиции может быть отрегулирована на основе выбора вяжущего компонента, имеющего желаемую реакционную способность. Компонент, имеющий высокую реакционную способность, может иметь меньшее время схватывания, чем компонент с низкой реакционной способностью.

Как будет понятно специалистам в данной области техники, цементные композиции, раскрытые в данном документе, могут использоваться во множестве подземных применений, включая первичное и восстановительное цементирование. Цементные композиции могут быть введены в подземный пласт и оставлены для схватывания. Как используется в данном документе, введение цементной композиции в подземный пласт включает в себя введение в любую часть подземного пласта, в ближнюю зону ствола скважины, окружающую ствол скважины, или в обе части. Например, при первичном цементировании цементные композиции могут вводиться в кольцевое пространство между трубой, расположенной в стволе скважины, и стенками ствола скважины (и/или большей трубой, находящейся в стволе скважины) в том месте, где ствол скважины проникает в подземный пласт. Цементная композиция может быть оставлена в кольцевом пространстве для образования кольцевой оболочки из затвердевшего цемента. Цементная композиция может образовывать барьер, который предотвращает миграцию флюидов в стволе скважины. Цементная композиция может также, например, поддерживать трубу в стволе скважины. При корректирующих применениях цементирования цементные композиции могут быть использованы, например, в операциях сжимающего цементирования или при размещении цементных пробок. Например, цементная композиция может быть введена в ствол скважины для закупоривания отверстия (например, пустоты или трещины) в пласте, в гравийной набивке, в трубе, в цементной оболочке и/или между цементной оболочкой и трубой (например, в кольцевом микрозазоре).

Хотя настоящее описание относится к цементным композициям и вяжущим компонентам, следует понимать, что раскрытые в данном документе методики можно использовать с любой подходящей композицией для обработки ствола скважины и соответствующими твердыми частицами, из которых цементные композиции и вяжущие компоненты являются одним из примеров. Дополнительные примеры суспензионных композиций могут включать, помимо прочего, разделительные флюиды, буровые растворы, таблетки для очистки, таблетки для поглощения бурового раствора и жидкости для гидроразрыва. Подходящие твердые частицы могут содержать любые из множества неорганических частиц, обычно используемых при обработке скважин.

Соответственно, это раскрытие описывает системы, композиции и способы, относящиеся к процессу разработки суспензии. Без ограничения, системы, композиции и способы могут дополнительно характеризоваться одним или несколькими из следующих утверждений:

Утверждение 1. Способ анализа твердых частиц, включающий в себя: измерение потребности в воде твердых частиц; и определение аппроксимации зависимости удельной площади поверхности твердых частиц от потребности в воде.

Утверждение 2. Способ по утверждению 1, отличающийся тем, что потребность в воде выражается как массовое отношение воды к твердым частицам, требуемое для получения предварительно определенной консистенции.

Утверждение 3. Способ по утверждению 1 или утверждению 2, отличающийся тем, что измерение потребности в воде включает подготовку смесителя с определенным количеством воды, перемешивание с помощью смесителя с указанной скоростью перемешивания, добавление твердых частиц в воду до получения заданной консистенции и вычисление потребности в воде, основанное на массовом отношении воды к твердым частицам, для получения заданной консистенции.

Утверждение 4. Способ по утверждению 3, отличающийся тем, что указанную консистенцию получают, когда вихрь, образующийся на поверхности в смесителе, имеет диаметр от около 0 мм до около 50 мм при смешивании твердых частиц и воды.

Утверждение 5. Способ по любому из предшествующих утверждений, отличающийся тем, что определение аппроксимации удельной площади поверхности включает ввод потребности в воде в уравнение для получения результата аппроксимации удельной площади поверхности.

Утверждение 6. Способ по любому предшествующему утверждению, отличающийся тем, что твердые частицы содержат источник кремнезема, который растворим в щелочи.

Утверждение 7. Способ по любому из предшествующих утверждений, отличающийся тем, что твердые частицы включают по меньшей мере один источник кремнезема, выбранный из группы, состоящей из летучей золы, шлака, пыли кремнезема, кристаллического кремнезема, кремнеземной муки, пыли цементной печи, вулканической породы, перлита, метакаолина, диатомовой земли, цеолита, сланца, золы сельскохозяйственных отходов, золы рисовой шелухи, золы сахарного тростника, портландцемента, золы багассы и их комбинаций.

Утверждение 8. Способ по любому из предшествующих утверждений, дополнительно включающий измерение по меньшей мере одного дополнительного свойства для твердых частиц, выбранных из группы, состоящей из прочности на сжатие, модуля Юнга и прочности на растяжение.

Утверждение 9. Способ по любому из предшествующих утверждений, дополнительно включающий определение индекса реакционной способности для твердых частиц на основе удельной площади поверхности.

Утверждение 10. Способ по любому из предшествующих утверждений, дополнительно включающий оценку прочности на сжатие цементной композиции, содержащей твердые частицы и одну или несколько дополнительных твердых частиц, при этом оценка использует аппроксимацию удельной поверхности для твердых частиц и удельных площадей поверхности для одной или дополнительных твердых частиц в качестве входных данных для уравнения, которое выводит результат вычисления прочности на сжатие, причем твердые частицы и дополнительные твердые частицы являются вяжущими.

Утверждение 11. Способ по любому из предшествующих утверждений, дополнительно включающий введение твердых частиц в цементную композицию и обеспечение возможности схватывания для цементной композиции.

Утверждение 12. Способ цементирования, включающий в себя: измерение потребности в воде твердых частиц; определение аппроксимации зависимости удельной площади поверхности твердых частиц от потребности в воде; определение аппроксимации прочности на сжатие для цементной композиции, содержащей твердые частицы; приготовление цементной композиции, причем цементная композиция содержит твердые частицы, одну или несколько дополнительных твердых частиц и воду; и позволение цементной композиции схватиться в заранее определенном месте.

Утверждение 13. Способ по утверждению 12, дополнительно включающий введение цементной композиции в ствол скважины.

Утверждение 14. Способ по утверждению 13, отличающийся тем, что цементную композицию вводят в ствол скважины с использованием одного или нескольких насосов.

Утверждение 15. Способ по любому из утверждений 12-14, отличающийся тем, что цементную композицию используют при первичном цементировании для образования затвердевшей цементной оболочки в затрубном пространстве скважины.

Утверждение 16. Способ по любому из утверждений 12-15, отличающийся тем, что приготовление включает смешивание компонентов цементной композиции с использованием смесительного оборудования, компонентов, содержащих твердые частицы, одну или несколько дополнительных твердых частиц и воду.

Утверждение 17. Способ по любому из утверждений 12-16, отличающийся тем, что потребность в воде представляет собой отношение массы воды к массе твердых частиц, необходимых для получения предварительно определенной консистенции.

Утверждение 18. Способ по любому из утверждений 12-17, отличающийся тем, что измерение потребности в воде включает подготовку смесителя с определенным количеством воды, перемешивание с помощью смесителя при определенных оборотах смесителя, добавление твердых частиц в воду до тех пор, пока не будет получена указанная консистенция, и вычисление потребности в воде на основе массового отношения воды к твердым частицам для получения указанной консистенции.

Утверждение 19. Способ по любому одному из утверждений 12-18, отличающийся тем, что определение аппроксимации удельной площади поверхности включает ввод потребности в воде в уравнение для получения результата аппроксимации удельной площади поверхности.

Утверждение 20. Способ по любому из утверждений 12-19, отличающийся тем, что твердые частицы содержат по меньшей мере один источник кремнезема, выбранный из группы, состоящей из летучей золы, шлака, пыли кремнезема, кристаллического кремнезема, кремнеземной муки, пыли цементной печи, вулканической породы, перлита, метакаолина, кизельгура, цеолита, сланцев, сельскохозяйственных отходов, золы, золы рисовой шелухи, золы сахарного тростника, золы багассы и их комбинаций.

Утверждение 21. Способ по любому одному из утверждений 12-20, дополнительно включающий измерение по меньшей мере одного дополнительного свойства для твердых частиц, выбранного из группы, состоящей из прочности на сжатие, модуля Юнга и прочности на растяжение, и определение индекса реакционной способности для твердых частиц на основе аппроксимации удельной поверхности.

Утверждение 22. Система, содержащая: твердые частицы; смеситель, выполненный с возможностью смешивания твердых частиц с водой; и компьютерную систему, выполненную с возможностью получения входных данных о потребности в воде для твердых частиц и вывода результата аппроксимации удельной площади поверхности твердых частиц.

Утверждение 23. Система по утверждению 22, отличающаяся тем, что компьютерная система выполнена с возможностью ввода потребности в воде в уравнение для получения результата аппроксимации удельной площади поверхности.

Утверждение 24. Система по утверждению 22 или утверждению 23, отличающаяся тем, что потребность в воде представляет собой отношение массы воды к массе твердых частиц, необходимых для получения предварительно определенной консистенции.

Утверждение 25. Система по любому из утверждений 22-24, дополнительно содержащая: цементную композицию, содержащую твердые частицы, одну или несколько дополнительных твердых частиц и воду; насосный флюид, гидравлически связанный с трубным элементом, находящимся в гидравлической связи со стволом скважины, причем трубный элемент выполнен с возможностью передачи цементной композиции в ствол скважины; и сосуд, расположенный выше по потоку от насоса, причем цементная композиция находится в сосуде.

А теперь примеры способов использования технологии представления реакционного способа будут описаны более подробно со ссылкой на фиг. 3. Проиллюстрирована система 300, предназначенная для анализа вяжущего компонента. Система 300 может содержать образец 305 вяжущего компонента, аналитический прибор 310 и компьютерную систему 315. Образец 305 вяжущего компонента может представлять собой любой интересующий вяжущий компонент. Вяжущие компоненты, как описано ранее, обычно можно классифицировать как растворимые в щелочи. Образец вяжущего компонента может быть помещен или подан в аналитический прибор 310. В некоторых примерах аналитический прибор 310 может быть выполнен с возможностью автоматической подачи образца 305 вяжущего компонента в аналитический прибор 310. Аналитический прибор 310 может быть выполнен с возможностью анализа физических и химических свойств образца 305 вяжущего компонента. Как описано выше, физические и химические свойства могут включать, без ограничения, морфологию, химический состав, потребность в воде и другие свойства. В качестве примера, аналитический инструмент 310 может использоваться для измерения потребности в воде для вяжущего компонента. Данные, сгенерированные аналитическим прибором 310, могут быть переданы в компьютерную систему 315 для обработки. Компьютерная система 315 может содержать процессор, память, внутреннее хранилище, средства ввода и вывода, средства сетевого подключения и/или другие компоненты, присущие компьютерным системам. Компьютерная система 315 может принимать данные от аналитического инструмента 310 в качестве входных данных и сохранять их в хранилище для последующей обработки. Обработка данных может включать ввод данных в алгоритмы, которые вычисляют результат. Обработка данных также может включать в себя организацию данных и представление данных, как описано ранее. В частности, компьютерная система может содержать алгоритмы, сконфигурированные для обработки данных, чтобы генерировать прогнозную модель физического и химического поведения образца 305 вяжущего компонента. Прогнозирующие модели могут храниться в базе данных прогнозирующих моделей 320, которая может храниться локально или в сети. База данных прогнозирующих моделей 320 может содержать все предыдущие прогнозирующие модели, сгенерированные алгоритмами, представления сгенерированных данных, а также необработанные данные.

Ссылаясь теперь на фиг. 4, на которой проиллюстрирована система 400, предназначенная для получения цементных композиций. Система 400 может содержать базу данных 320 прогнозирующих моделей и компьютерную систему 410. В некоторых примерах компьютерная система 410 может быть такой же компьютерной системой 315, проиллюстрированной на фиг. 3. Данные, вводимые пользователем 420, могут определять технические параметры, такие как требуемая прочность на сжатие цементной суспензии, статическая температура забоя скважины, требуемые реологические свойства суспензии, время сгущения суспензии, вяжущие материалы, вяжущие добавки, свободный флюид, проницаемость, поровое давление, градиент гидроразрыва, вес бурового раствора, плотность, кислотостойкость, солеустойчивость и другие параметры. Компьютерная система 410 может быть выполнена с возможностью ввода пользовательских данных 420 и прогнозирующих моделей, представлений реакционных свойств и данных, хранящихся в базе данных 320, в алгоритм прогнозного цементирования. Алгоритм прогнозного цементирования может генерировать цементную композицию или композиции, которые соответствуют техническим требованиям, определенным пользовательскими данными 420. Выход 430 алгоритма прогнозного цементирования может содержать относительные количества каждого вяжущего компонента в генерируемой цементной композиции, а также прогнозируемые свойства материала цементной композиции.

Например, если пользователь выбирает портландцемент, летучую золу и вулканическую породу в качестве доступных вяжущих материалов, компьютерная система может запросить базу данных 320 прогнозных моделей для требуемых моделей, представлений и данных, соответствующих вяжущим материалам. Как описано ранее, может использоваться много разных параметров, таких как размер частиц, местный источник вяжущего материала, среди прочих, которые могут определять, какой набор данных извлекается из базы данных прогнозирующих моделей 320. Алгоритм прогнозирующего цементирования может быть выполнен с возможностью оптимизации выходной цементной суспензии на основе одного или нескольких параметров, таких как стоимость, прочность на сжатие или любого другого выбранного параметра. В некоторых примерах алгоритм прогнозирующего цементирования может определять аппроксимацию удельной площади поверхности на основе измеренной потребности в воде. В некоторых примерах алгоритм прогнозирующего цементирования может оптимизироваться по двум или более переменным. Результат выполнения алгоритма в этом примере может составлять, например, 30% по массе портландцемента, 30% по массе вулканической породы, 20% летучей золы и 20% извести с избытком воды по массе, равным 120%. Сгенерированная суспензия может в пределах погрешности соответствовать техническим параметрам, предоставленным пользовательским вводом 420. Сгенерированная суспензия может быть добавлена в базу данных прогнозирующих моделей 320 для использования в будущих вычислениях.

Как уже рассматривалось, вяжущим компонентам могут быть присущи вторичные эффекты, такие как гелеобразование, диспергирующие свойства и другие вторичные эффекты, ранее упомянутые в дополнение к первичному эффекту цементирования при включении в цементную композицию. Алгоритм прогнозирующего цементирования может рассчитывать вторичные эффекты каждого компонента в цементной суспензии и оптимизировать относительные количества каждого вяжущего компонента, чтобы обеспечить достижение целевых параметров. Пользовательский ввод 420 может указывать, например, на относительно более высокую потребность в свободной воде для цементной суспензии. Алгоритм прогнозирующего цементирования может выбрать включение вяжущего компонента, который требует меньше воды, на основе представления и данных, чтобы гарантировать, что потребность в свободной воде, указанная пользовательским вводом 420, удовлетворена.

Теперь делается ссылка на фиг. 5, иллюстрирующую использование цементной композиции 500. Цементная композиция 500 может содержать любой из компонентов, описанных в данном документе. Цементная композиция 500 может быть разработана, например, с использованием представления реакционных свойств, как описано в данном документе. Обращаясь к фиг. 5, цементная композиция 500 может быть помещена в подземный пласт 505 в соответствии с примерами систем, способов и цементных композиций. Как проиллюстрировано, ствол скважины 510 может быть пробурен в подземном пласте 505. Хотя ствол 510 скважины показан как направленный в основном вертикально в подземный пласт 505, принципы, описанные в настоящем документе, применимы также к стволам скважин, направленным через подземный пласт 505 под углом, таким как горизонтальные и наклонные стволы скважин. Как проиллюстрировано, ствол 510 скважины содержит стенки 515. Как проиллюстрировано, кондукторная колонна 520 была вставлена в ствол 510 скважины. Кондукторная колонна 520 может быть зацементирована со стенками 515 ствола 510 скважины посредством цементной оболочки 525. Как проиллюстрировано, в стволе 510 скважины также может быть расположены одна или более дополнительных труб (например, промежуточная колонна, эксплуатационная колонна, хвостовик и т.д.), показанные в настоящем документе как обсадная колонна 530. Как проиллюстрировано, кольцевой зазор 535 ствола скважины образован между обсадной колонной 530 и стенками 515 ствола 510 скважины и/или кондукторной колонной 520. Один или более центраторов 540 может быть присоединен к обсадной колонне 530, например, для центрирования обсадной колонны 530 в стволе 510 скважины до и во время операции цементирования.

Продолжая ссылаться на фиг. 5, цементная композиция 500 может откачиваться внутрь обсадной колонны 530. Цементной композиции 500 можно дать возможность стекать вниз внутри обсадной колонны 530 через башмак обсадной колонны 545 на дне обсадной колонны 530, а также подниматься вокруг обсадной колонны 530 в кольцевое пространство 535 ствола скважины. Цементная композиция 500 может быть оставлена для схватывания в кольцевом зазоре 535 ствола скважины, например, с образованием цементной оболочки, которая поддерживает и удерживает на месте колонну 530 в стволе 510 скважины. Хотя это не проиллюстрировано, для введения цементной композиции 500 могут быть использованы также другие технологии. Например, можно использовать способ обратной циркуляции, который включает введение цементной композиции 500 в подземную формацию 505 не через обсадную колонну 530, а через кольцевое пространство ствола скважины 535. После введения цементная композиция 500 может вытеснять другие флюиды 550, такие как буровые растворы и/или вытесняющие жидкости, которые могут присутствовать во внутренней части обсадной колонны 530 и/или в кольцевом пространстве ствола скважины 535. Хотя это не показано по меньшей мере часть вытесненных флюидов 550 может выходить из кольцевого пространства 535 ствола скважины через линию потока и осаждаться, например, в одной или нескольких удерживающих ямах. Нижняя пробка 355 может быть введена в ствол 510 скважины перед цементной композицией 500, например, для отделения цементной композиции 500 от флюидов 550, которые могут находиться внутри обсадной колонны 530 до цементирования. После того как нижняя пробка 555 достигнет муфты 580 для подвешивания колонны, должна разорваться мембрана или другое подходящее устройство, чтобы цементная композиция 500 прошла через нижнюю пробку 555. Нижняя пробка 555 показана на муфте 580 для подвешивания колонны. На иллюстрации верхняя пробка 560 может быть введена в ствол 510 скважины за цементной композицией 500. Верхняя пробка 360 может отделять цементную композицию 500 от вытесняющей жидкости 565, а также проталкивать цементную композицию 500 через нижнюю пробку 555.

Раскрытые цементные композиции и связанные с ними способы могут прямо или косвенно влиять на любые насосные системы, которые в качестве примера содержат любые патрубки, трубопроводы, тележки, трубные элементы и/или трубы, которые могут быть соединены с насосом и/или любыми насосными системами и могут использоваться для гидравлического транспортирования цементных композиций в скважине, любые насосы, компрессоры или двигатели (например, верхние или нижние), используемые для приведения цементных композиций в движение, любые клапаны или соответствующие соединения, используемые для регулирования давления или расхода цементных композиций, и любые датчики (то есть давления, температуры, скорости потока и т.д.), датчики и/или их комбинации и тому подобное. Цементные композиции также могут прямо или косвенно влиять на любые смесительные бункеры и удерживающие ямы и их различные варианты.

Следует понимать, что композиции и способы описаны в настоящем документе в контексте «содержания», «вмещения» или «включения» различных компонентов или стадий, и композиции и способы могут также «состоять по существу из» или «состоять из» различных компонентов и стадий. Более того, применяемая в формуле изобретения форма единственного числа предполагает наличие одного или более выражаемых в ней элементов.

Для краткости, в данном документе раскрыты полностью только определенные диапазоны. Тем не менее, диапазоны от любого нижнего предела могут быть скомбинированы с любым верхним пределом, чтобы описать диапазон, не описанный полностью, так же как диапазоны от любого нижнего предела могут быть скомбинированы с любым другим нижним пределом, чтобы описать диапазон, не описанный полностью, таким же образом, диапазоны от любого верхнего предела могут быть скомбинированы с любым другим верхним пределом, чтобы описать диапазон, не описанный полностью. Кроме того, во всех случаях, когда описан числовой диапазон с нижним пределом и верхним пределом, конкретно описано любое число и любой включенный диапазон, попадающие в указанный диапазон. В частности, каждый диапазон значений (в виде «от около a до около b» или, эквивалентно, «от около a до b» или, эквивалентно, «от около a-b»), описанный в настоящем документе, следует понимать как описывающий каждое число и диапазон, входящие в более широкий диапазон значений, даже если они не описаны полностью. Таким образом, каждая точка или отдельное значение могут выступать в качестве своего собственного нижнего или верхнего предела, скомбинированные с любой другой точкой или отдельным значением или с любым другим нижним или верхним пределом, чтобы описать диапазон, не описанный полностью.

Таким образом, настоящее изобретение идеально подходит для достижения целей и реализации преимуществ, указанных выше, а также присущих ему. Конкретные примеры, описанные выше, являются только иллюстративными, так как данное изобретение может быть модифицировано и реализовано различными, но эквивалентными способами, очевидными специалисту в данной области техники благодаря идеям, изложенным в данном документе. Хотя обсуждаются отдельные примеры, изобретение охватывает все комбинации всех этих примеров. Кроме того, не предусматривается никаких ограничений для элементов конструкции или конструкции, показанных в данном документе, кроме как описано ниже в формуле изобретения. Кроме того, термины в формуле изобретения имеют свое простое, обычное значение, если иное явно и четко не определено патентообладателем. Таким образом, следует понимать, что частные иллюстративные примеры, описанные выше, могут быть изменены или модифицированы, при этом все такие изменения находятся в пределах объема и сущности указанных вариантов реализации изобретения. При наличии противоречий в использовании слова или термина в настоящем описании и одном или более патенте(-ах) или других документах, которые могут быть включены в настоящее описание посредством ссылки, следует принимать определения, соответствующие настоящему описанию.

Похожие патенты RU2733758C1

название год авторы номер документа
СПОСОБ РАЗРАБОТКИ СУСПЕНЗИИ 2017
  • Морган, Ронни Глен
  • Писклак, Томас Джейсон
  • Хименес, Вальми Куэльо
  • Хундт, Грегори Роберт
  • Бенкли, Джеймс Роберт
  • Сандерс, Джозеф И.
  • Сингх, Джон П.
  • Льюис, Сэмюель Дж.
RU2728755C1
УТИЛИЗАЦИЯ ОТХОДОВ ПРОИЗВОДСТВА ПУТЕМ АНАЛИЗА КОМПОНЕНТНОГО СОСТАВА 2017
  • Бенкли, Джеймс Роберт
  • Бреннис, Даррелл Чэд
  • Писклак, Томас Джейсон
  • Морган, Ронни Глен
RU2737254C1
УПРАВЛЕНИЕ ТЕПЛОТОЙ ГИДРАТИЦИИ ПУТЕМ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ВЯЖУЩИХ КОМПОНЕНТОВ 2017
  • Хименес, Вальми Куэльо
  • Пан, Сюеюй
  • Сингх, Джон П.
RU2733765C1
ИЗВЕСТКОВО-КРЕМНЕЗЕМНЫЕ ЦЕМЕНТЫ С НИЗКИМ СОДЕРЖАНИЕМ ПОРТЛАНДЦЕМЕНТА 2017
  • Писклак, Томас Джейсон
  • Бенкли, Джеймс Роберт
  • Сингх, Джон П.
RU2724864C1
КАРТИРОВАНИЕ РЕАКЦИОННОЙ СПОСОБНОСТИ 2017
  • Писклак, Томас Джейсон
  • Бенкли, Джеймс Роберт
  • Бреннис, Даррелл Чэд
  • Морган, Ронни Глен
  • Хименес, Валми, Куэлло
  • Сингх, Джон П.
RU2728648C1
СПОСОБ СОСТАВЛЕНИЯ ПРОЧНОСТИ НА СЖАТИЕ ДЛЯ ЦЕМЕНТНОГО РАСТВОРА 2019
  • Сингх, Джон Пол Бир
  • Писклак, Томас Джейсон
  • Морган, Ронни Глен
RU2779174C1
СПОСОБЫ ОПРЕДЕЛЕНИЯ ИНДЕКСА РЕАКЦИОННОЙ СПОСОБНОСТИ ЦЕМЕНТИРУЮЩИХ КОМПОНЕНТОВ, СВЯЗАННЫЕ С НИМИ КОМПОЗИЦИИ И СПОСОБЫ ИХ ПРИМЕНЕНИЯ 2013
  • Морган Ронни Г.
  • Бреннайс Д. Чэд
  • Родди Крэйг У.
RU2616959C2
ЦЕМЕНТИРУЮЩИЕ КОМПОЗИЦИИ НИЗКОЙ ПЛОТНОСТИ ДЛЯ ПРИМЕНЕНИЯ ПРИ НИЗКИХ И ВЫСОКИХ ТЕМПЕРАТУРАХ 2016
  • Власопоулос, Николаос
  • Чэнь, Джеффри
RU2717586C2
СПОСОБЫ ОПРЕДЕЛЕНИЯ ИНДЕКСА РЕАКЦИОННОЙ СПОСОБНОСТИ ЦЕМЕНТНОЙ ПЕЧНОЙ ПЫЛИ, СООТВЕТСТВУЮЩИЕ КОМПОЗИЦИИ И СПОСОБЫ ИХ ИСПОЛЬЗОВАНИЯ 2013
  • Морган Ронни Г.
  • Бреннайс Д. Чэд
  • Родди Крэйг У.
RU2629028C2
КОМПОЗИЦИИ И СПОСОБЫ ДЛЯ ЦЕМЕНТИРОВАНИЯ СКВАЖИН 2002
  • Родди Крэйг В.
RU2351745C2

Иллюстрации к изобретению RU 2 733 758 C1

Реферат патента 2020 года ПРИМЕНЕНИЕ ИЗМЕРЕНИЯ ПОТРЕБНОСТИ В ВОДЕ ДЛЯ ВЫПОЛНЕНИЯ АППРОКСИМАЦИИ УДЕЛЬНОЙ ПЛОЩАДИ ПРИ ЦЕМЕНТИРОВАНИИ СКВАЖИНЫ

Группа изобретений относится к области цементирования скважин и, в частности, к цементированию при строительстве или ремонте скважин. Технический результат – повышение эффективности цементирования за счет повышения точности определения потребности в воде в зависимости от удельной поверхности твердых частиц. По способу при цементировании скважины измеряют потребность в воде твердых частиц. Аппроксимируют зависимость удельной поверхности твердых частиц от потребности в воде. Потребность в воде выражают как массовое отношение воды к твердым частицам, требуемое для получения предварительно определенной консистенции. При этом для определения потребности в воде подготавливают смеситель с определенным количеством воды. Осуществляют перемешивание с помощью смесителя с указанной скоростью перемешивания с добавлением твердых частиц в воду до получения заданной консистенции. Вычисляют потребность в воде, основанную на массовом отношении воды к твердым частицам, для получения заданной консистенции. При этом указанную консистенцию получают, когда вихрь, образующийся на поверхности в смесителе, имеет диаметр от около 0 мм до около 50 мм при смешивании твердых частиц и воды. 3 н. и 10 з.п. ф-лы, 5 ил., 2 табл.

Формула изобретения RU 2 733 758 C1

1. Способ анализа твердых частиц для цементирования скважины, включающий в себя:

измерение потребности в воде твердых частиц; а также

определение аппроксимации зависимости удельной поверхности твердых частиц от потребности в воде, при этом потребность в воде выражается как массовое отношение воды к твердым частицам, требуемое для получения предварительно определенной консистенции, отличающийся тем, что измерение потребности в воде включает подготовку смесителя с определенным количеством воды, перемешивание с помощью смесителя с указанной скоростью перемешивания, добавление твердых частиц в воду до получения заданной консистенции и вычисление потребности в воде, основанное на массовом отношении воды к твердым частицам, для получения заданной консистенции, при этом указанную консистенцию получают, когда вихрь, образующийся на поверхности в смесителе, имеет диаметр от около 0 мм до около 50 мм при смешивании твердых частиц и воды.

2. Способ по п. 1, отличающийся тем, что определение аппроксимации удельной площади поверхности включает ввод потребности в воде в уравнение для получения результата аппроксимации удельной площади поверхности.

3. Способ по любому из пп. 1, 2, отличающийся тем, что твердые частицы содержат источник кремнезема, который растворим в щелочи, и, необязательно, что твердые частицы содержат по меньшей мере один источник кремнезема, выбранный из группы, состоящей из летучей золы, шлака, пыли кремнезема, кристаллического кремнезема, кремнеземной муки, пыли цементной печи, вулканической породы, перлита, метакаолина, диатомовой земли, цеолита, сланца, золы сельскохозяйственных отходов, золы рисовой шелухи, золы сахарного тростника, портландцемента, золы багассы и их комбинаций.

4. Способ по любому из пп. 1-3, дополнительно включающий измерение по меньшей мере одного дополнительного свойства для твердых частиц, выбранных из группы, состоящей из прочности на сжатие, модуля Юнга и прочности на растяжение.

5. Способ по любому из пп. 1-4, дополнительно включающий введение твердых частиц в цементную композицию и обеспечение возможности схватывания для цементной композиции.

6. Способ цементирования скважины, включающий в себя:

измерение потребности в воде твердых частиц, причем потребность в воде представляет собой отношение массы воды к массе твердых частиц, требуемое для получения предварительно определенной консистенции, отличающийся тем, что измерение потребности в воде включает в себя подготовку смесителя с определенным количеством воды, перемешивание с помощью смесителя при определенных оборотах смесителя, добавление твердых частиц в воду до тех пор, пока не будет получена указанная консистенция, и вычисление потребности в воде на основе массового отношения воды к твердым частицам для получения указанной консистенции,

определение аппроксимации зависимости удельной поверхности твердых частиц от потребности в воде;

определение аппроксимации прочности на сжатие для цементной композиции, содержащей твердые частицы;

приготовление цементной композиции, при этом цементная композиция содержит твердые частицы, одну или несколько дополнительных твердых частиц и воду; а также

обеспечение возможности схватывания цементной композиции в заранее определенном месте.

7. Способ по п. 6, дополнительно включающий введение цементной композиции в ствол скважины, отличающийся тем, что цементную композицию вводят в ствол скважины с использованием одного или нескольких насосов, при этом цементную композицию используют при первичном цементировании для образования затвердевшей цементной оболочки в затрубном пространстве скважины.

8. Способ по п. 6 или 7, отличающийся тем, что приготовление включает в себя смешивание компонентов цементной композиции с использованием смесительного оборудования, при этом компоненты включают твердые частицы, одну или несколько дополнительных твердых частиц и воду.

9. Способ по любому из предшествующих пунктов, отличающийся тем, что определение аппроксимации удельной площади поверхности включает ввод потребности в воде в уравнение для получения результата аппроксимации удельной площади поверхности.

10. Способ по любому из предшествующих пунктов, отличающийся тем, что твердые частицы включают по меньшей мере один источник кремнезема, выбранный из группы, состоящей из летучей золы, шлака, пыли кремнезема, кристаллического кремнезема, кремнеземной муки, пыли цементной печи, вулканической породы, перлита, метакаолина, диатомовой земли, цеолита, сланца, золы сельскохозяйственных отходов, золы рисовой шелухи, золы сахарного тростника, золы багассы и их комбинаций.

11. Способ по любому из предшествующих пунктов, дополнительно включающий в себя измерение по меньшей мере одного дополнительного свойства для твердых частиц, выбранного из группы, состоящей из прочности на сжатие, модуля Юнга и прочности на растяжение, и определение индекса реакционной способности для твердых частиц на основе аппроксимации удельной поверхности.

12. Система для цементирования скважины, содержащая:

твердые частицы;

смеситель, выполненный с возможностью смешивания твердых частиц с водой; и

компьютерную систему, выполненную с возможностью приема входных данных о потребности в воде для твердых частиц, причем потребность в воде представляет собой отношение массы воды к массе твердых частиц, требуемое для получения предварительно определенной консистенции, отличающаяся тем, что она предусматривает смеситель с определенным количеством воды, обеспеченный возможностью перемешивания при определенных оборотах с добавлением твердых частиц в воду до тех пор, пока не будет получена указанная консистенция с возможностью вычисления потребности в воде на основе массового отношения воды к твердым частицам для получения указанной консистенции,

и выводом аппроксимации удельной площади поверхности твердых частиц от потребности в воде.

13. Система по п. 12, отличающаяся тем, что компьютерная система выполнена с возможностью ввода потребности в воде в уравнение для получения результата аппроксимации удельной площади поверхности, при этом потребность в воде представлена отношением массы воды к массе твердых частиц, требуемых для получения предварительно определенной консистенции.

Документы, цитированные в отчете о поиске Патент 2020 года RU2733758C1

КАШАЕВ Э
Ф
и др
Влияние удельной поверхности цемента низкой водопотребности на его свойства, Международный научный журнал "Инновационная наука", Научно-издательский центр АЭТЕРНА, 11-2/2016, с
Приспособление для плетения проволочного каркаса для железобетонных пустотелых камней 1920
  • Кутузов И.Н.
SU44A1
НАНОЦЕМЕНТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2013
  • Юдович Борис Эммануилович
  • Зубехин Сергей Алексеевич
RU2577340C2
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса 1924
  • Шапошников Н.П.
SU2015A1
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса 1924
  • Шапошников Н.П.
SU2015A1
Токарный резец 1924
  • Г. Клопшток
SU2016A1

RU 2 733 758 C1

Авторы

Морган, Ронни Глен

Писклак, Томас Джейсон

Риджо, Шон Уилльям

Льюис, Самюэль Дж.

Даты

2020-10-06Публикация

2017-02-22Подача