ГЕЛИОСУШИЛЬНЫЙ КОМПЛЕКС Российский патент 2020 года по МПК F26B3/28 F26B21/04 

Описание патента на изобретение RU2734395C1

Предлагаемое изобретение относится к гелиотехнике и предназначено для непрерывного и круглосуточного проведения процесса сушки различного сырья солнечной энергией и может быть использовано в аграрном секторе и других смежных отраслях промышленности.

Известны устройства для осушки воздуха, включающие два адсорбера, соединенных трубопроводами, которые связаны с клапанами, обеспечивающими переключение режимов их работы с режима осушки в режим регенерации по команде от системы управления клапанами [1-3].

Наиболее близким техническим решением к заявляемому гелиосушильному комплексу является устройство для осушки сжатого газа [4]. Регенерация увлажненного адсорбера во всех известных технических решениях осуществляется использованием существенной доли ранее осушенного газа и пропусканием его в обратном направлении через регенерируемый адсорбер, что, безусловно, значительно снижает производительность данного устройства по выработке осушенного воздуха. Кроме того, для эффективной десорбции воды в адсорбентах минимальная температура нагретого воздуха должна иметь значение выше 100°С, что требует еще и существенных дополнительных энергозатрат для регенерации адсорбера с увлажненным адсорбером.

Целью предлагаемого технического решения является устранение указанных недостатков.

Указанная цель достигается тем, что в заявленном гелиосушильном комплексе, содержащем сушильную камеру, гелиоприемник, тепловоспринимающая панель которого одновременно является и фазопереходным тепловым аккумулятором, два адсорбера, попеременно работающих в режиме осушки и регенерации, канальный вентилятор, систему трубопроводов с запорно-регулирующей арматурой, а для обеспечения круглосуточной и бесперебойной осушки увлажненного адсорбента, находящегося в одном из адсорберов, работающем в режиме регенерации, он содержит дополнительный гелиоприемник с фазопереходным тепловым аккумулятором.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является непрерывная подача осушенного и нагретого до заданной температуры воздуха в сушильную камеру и проведение круглосуточного и бесперебойного процесса сушки, при котором единственным источником необходимой тепловой энергии является энергия солнечной радиации.

Постоянное поддержание подачи осушенного воздуха в сушильную камеру обеспечивается двумя попеременно работающими адсорберами.

Постоянное круглосуточное поддержание нагретого до оптимальной для сушки выбранного сырья температуры воздуха, поступающего в сушильную камеру, обеспечивается первым гелиоприемником. Второй гелиоприемник предназначен для обеспечения круглосуточного поступления нагретого до необходимой для регенерации температуры адсорбента воздуха в адсорбер, работающий в режиме регенерации. Оба гелиоприемника имеют одинаковую конструкцию [5]. Каждый из них представляет собой обычный плоский солнечный коллектор-воздухонагреватель с открытыми нижним и верхним торцами, а тепловоспринимающая панель является одновременно и фазопереходным тепловым аккумулятором, который изготавливается из трубчатых герметичных контейнеров, заполненных фазопереходным теплоаккумулирующим составом и соединенных друг с другом теплопередающими ребрами, образуя сплошную тепловоспринимающую поверхность. Для максимального теплосъема теплоносителем со всей поверхности тепловоспринимающей панели по ее верхней и нижней поверхности оставлены зазоры для прохождения нагреваемого воздуха.

Гелиоприемники отличаются друг от друга лишь размерами тепловоспринимающей панели и контейнеров с теплоаккумулирующим составом, а также различием состава теплоаккумулирующего материала. Теплоаккумулирующий состав каждого гелиоприемника подбирают из условия соответствия температуры его плавления оптимальной температуре для сушки конкретного исходного материала, подвергаемого сушке (для гелиоприемника, с которого нагретый воздух поступает в сушильную камеру) или для регенерации выбранного адсорбента (для гелиоприемника, предназначенного для осушки увлажненного адсорбента).

Постоянное поддержание оптимальной температуры нагретого воздуха в каждом гелиоприемнике обеспечивается фазопереходным тепловым аккумулятором. В периоды прямого солнечного излучения поступающая на тепловоспринимающую панель солнечная энергия расходуется на зарядку самого аккумулятора, т.е. на плавление теплоаккумулирующего материала во всех контейнерах, и на нагрев подаваемого в сушильную камеру (или в адсорбер, работающий в режиме регенерации) воздуха по обе стороны поверхности теплового аккумулятора. При этом температура поверхности аккумулятора остается постоянной и равной температуре плавления выбранного теплоаккумулирующего состава. И в периоды отсутствия солнечного излучения температура нагретого воздуха, поступающего со всей поверхности тепловоспринимающей панели гелиоприемника, также будет равной температуре кристаллизации соответствующего теплоаккумулирующего состава. И пока вся масса теплоаккумулирующего состава не закристаллизуется, температура на поверхности контейнеров с теплоаккумулирующим составом, следовательно, и нагретого воздуха, останется постоянной.

Сущность изобретения поясняется чертежом на фиг.1, где приведена принципиальная схема гелиосушильного комплекса. Гелиосушильный комплекс состоит из гелиоприемника 1, предназначенного для круглосуточной выработки тепловой энергии для сушки сырья, разложенного на лотках 2 в сушильной камере 3. Увлажненный воздух по трубопроводу из выхода сушильной камеры подается канальным вентилятором 4 в один из двух адсорберов 51 или 52. На фиг. 1 адсорбер 51 работает в режиме осушки, адсорбер 52 - в режиме регенерации. При этом в трехходовом кране 6 с одним входом (из сушильной камеры) открыта подача воздуха по левую сторону в адсорбер 51 и автоматически закрыта подача воздуха в адсорбер 52. В адсорбере 51 воздух осушается и нагревается. Осушенный воздух через трехходовой кран 7 с одним выходом по открытой левой сторонке поступает в канальный вентилятор 4, а из него по трубопроводам направляется в нижний торец гелиоприемника 1.

При регенерации адсорбента воздух из атмосферы через открытый нижний торец гелиоприемника 8 поступает на обе стороны тепловоспринимающей панели, где нагревается до необходимой температуры, а затем по трубопроводу поступает в адсорбер 52 через открытую правую сторону трехходового крана 9 с одним входом. Нагретый воздух проходит через увлажненный адсорбент, высушивает его и через открытый вентиль 101 естественной тягой удаляется в окружающую среду в виде увлаженного воздуха 11.

РАБОТА ГЕЛИОСУШИЛЬНОГО КОМПЛЕКСА ПРОИСХОДИТ СЛЕДУЮЩИМ ОБРАЗОМ

В периоды прямого солнечного излучения светлого времени суток солнечные лучи, проходя через светопрозрачное покрытие гелиоприемника 1, нагревают тепловоспринимающую панель вместе с теплоаккумулирующим составом в контейнерах до необходимой температуры. Нагретый в зазорах по обе стороны тепловоспринимающей панели гелиоприемника воздух тягой, создаваемой канальным вентилятором 4, попадает в более холодный внутренний объем сушильной камеры 3. Нагретый от гелиоприемника воздух является не только теплоносителем, но и сушильным агентом. Далее, с верхнего торца гелиоприемника по объему сушильной камеры горячий воздух при постоянной температуре поднимается вверх, обволакивая и высушивая влажное сырье, разложенное на поддонах 2. Из-за необходимости периодической регенерации адсорбента в систему включают два адсорбера 51 и 52, каждый из которых попеременно работает в режиме осушки и регенерации.

Увлажненный воздух из сушильной камеры по трубопроводу поступает в трехходовой кран 6 с одним входом, из которого по соответствующему выходу подается именно в тот адсорбер, который работает в режиме осушки увлажненного воздуха (на фиг. 1 адсорбер 51). После осушки из адсорбера воздух поступает в трехходовой кран 7 с одним входом. В положении, изображенном на фиг. 1, открыт вход в трехходовой кран 7 со стороны адсорбера 51 и автоматически закрыт вход со стороны адсорбера 52. После выхода из трехходового крана 7 воздух поступает через канальный вентилятор 4 по обратной трубе в нижний торец гелиоприемника 1. После насыщения влагой содержимого адсорбента адсорбер 51 переводят в режим работы по регенерации увлажненного адсорбента.

В период работы адсорбера 51 в режиме осушки адсорбер 52 с ранее увлажненным адсорбентом работает в режиме регенерации. При этом воздух из окружающей среды поступает через нижний открытый торец на тепловоспринимающую панель гелиоприемника 8, где нагревается до заданной температуры, и поступает далее на вход адсорбера 52. Нагрев воздуха продолжается до достижения температуры плавления теплоаккумулирующего состава, соответствующей оптимальной температуре, необходимой для регенерации выбранного конкретного адсорбента. После достижения искомой температуры начинается зарядка теплового аккумулятора, заключающаяся в расплавлении всей массы теплоаккумулирующего состава во всех контейнерах. В ночное время и в пасмурную погоду эта же температура на поверхности тепловоспринимающей панели сохраняется, благодаря процессу разрядки фазопереходного теплового аккумулятора. Таким образом, в адсорбер, работающий в режиме регенерации, постоянно и круглосуточно подается воздух, нагретый до строго заданной температуры, необходимой для регенерации адсорбента. Нагретый воздух с открытого верхнего торца гелиоприемника 8 по трубопроводу поступает на трехходовой кран 9 с одним входом и подается в нижнюю часть того адсорбера, который работает в режиме регенерации (на фиг. 1 адсорбер 52). При этом автоматически закрыт вход в адсорбер, работающий в это время в режиме осушки увлажненного воздуха (на фиг. 1 адсорбер 51). Горячий воздух проходит через увлажненный адсорбент, высушивает его и с парами воды через открытый вентиль 101 естественной тягой удаляется в окружающую среду. Процесс регенерации заканчивается после достижения значения влажности адсорбента, соответствующего первоначальному состоянию (до увлажнения), после чего данный адсорбер переводят в режим осушки.

Переключение адсорберов в соответствующий режим их работы после каждого цикла производится с помощью трехходовых кранов 6, 7 и 9, а также вентилями 101 и 102.

Процесс регенерации должен иметь меньшую продолжительность, чем процесс насыщения адсорбента влагой, чтобы к моменту насыщения влагой адсорбента в адсорбере 51 адсорбер 52 был уже готов к работе в режиме осушки.

Источники информации:

1. Заявка Японии №61-35891 В, МКИ B01D 53/26, 53/02 от 86.08.15.

2. Заявка ЕПВ №0212101, МКИ B01D 53/04, 53/26 от 87.03.04.

3. Заявка ФРГ №3514473, МКИ B01D 53/26, от 86.10.23.

4. Авторское свидетельство RU №2165786, 27.04.2001.

5. Авторское свидетельство RU №2664457, 25.02.2019.

Похожие патенты RU2734395C1

название год авторы номер документа
АВТОНОМНАЯ СОЛНЕЧНАЯ БИОГАЗОВАЯ УСТАНОВКА 2019
  • Дибиров Яхя Алиевич
  • Алхасов Алибек Басирович
  • Дибиров Камиль Яхяевич
  • Искендеров Эльдар Гаджимурадович
RU2734456C1
ГЕЛИОБИОГАЗОВЫЙ КОМПЛЕКС 2021
  • Дибиров Яхя Алиевич
  • Алхасов Алибек Басирович
  • Дибиров Камиль Яхяевич
RU2785600C2
СОЛНЕЧНЫЙ ВОЗДУХОНАГРЕВАТЕЛЬ 2016
  • Дибиров Яхя Алиевич
  • Алхасов Алибек Басирович
  • Дибиров Магомед Гаджимагомедович
  • Дибиров Камиль Яхяевич
  • Дибирова Маржанат Магомедовна
  • Ильясов Амир Маратович
RU2680639C2
СОЛНЕЧНАЯ БИОГАЗОВАЯ УСТАНОВКА 2017
  • Дибиров Яхя Алиевич
  • Дибиров Магомед Гаджимагомедович
  • Дибиров Камиль Яхяевич
  • Дибирова Маржанат Магомедовна
RU2664457C1
ОСУШИТЕЛЬ ГАЗОВ 2013
  • Шаповалов Юрий Николаевич
  • Корнеева Юлия Сергеевна
RU2552546C2
Теплоаккумулирующий фазопереходный материал 1990
  • Дибиров Мухтар Алиевич
  • Бочков Михаил Михайлович
  • Левина Лидия Николаевна
SU1733461A1
Энергоэффективная конвективно-вакуум-импульсная сушильная установка с тепловыми аккумуляторами 2019
  • Зорин Александр Сергеевич
  • Иванова Ирина Викторовна
  • Никитин Дмитрий Вячеславович
  • Родионов Юрий Викторович
  • Щегольков Александр Викторович
RU2716056C1
СПОСОБ ОСУШКИ ГАЗА И БЛОК ОСУШКИ ГАЗА ДЛЯ ЕГО РЕАЛИЗАЦИИ 2013
  • Гриценко Владимир Дмитриевич
  • Шевцов Александр Петрович
  • Лачугин Иван Георгиевич
  • Чагин Сергей Борисович
  • Черниченко Владимир Викторович
  • Лаунин Геннадий Львович
RU2534145C1
УСТАНОВКА ДЛЯ ОСУШКИ СЖАТОГО ВОЗДУХА 2003
  • Даниленко Анатолий Петрович
  • Даниленко Владимир Анатольевич
RU2236892C1
Энергоактивное ограждение 1987
  • Вайнштейн Семен Исаакович
  • Попель Олег Сергеевич
  • Баланюк Антонина Александровна
  • Карагезов Руслан Иванович
  • Меладзе Нукзар Варламович
  • Спирова Анна Валентиновна
SU1418433A1

Иллюстрации к изобретению RU 2 734 395 C1

Реферат патента 2020 года ГЕЛИОСУШИЛЬНЫЙ КОМПЛЕКС

Изобретение относится к гелиотехнике и предназначено для круглосуточной сушки различных продуктов. Постоянное поддержание подачи осушенного воздуха в сушильную камеру обеспечивается двумя попеременно работающими адсорберами. Стабильное поддержание нагретого до оптимальной для сушки выбранного сырья температуры воздуха, поступающего в сушильную камеру, обеспечивается первым гелиоприемником. А второй гелиоприемник обеспечивает бесперебойную подачу нагретого до оптимальной для осушки увлажненного адсорбента температуры воздуха в адсорбер, работающий в режиме регенерации. Каждый гелиоприемник содержит фазопереходный тепловой аккумулятор, температура плавления теплоаккумулирующего состава которого равен оптимальной температуре проведения соответствующего процесса его предназначения. Технический результат заключается в непрерывной подаче осушенного и нагретого до заданной температуры воздуха в сушильную камеру и проведении круглосуточного и бесперебойного процесса сушки 1 ил.

Формула изобретения RU 2 734 395 C1

Гелиосушильный комплекс, содержащий сушильную камеру, гелиоприемник, тепловоспринимающая панель которого одновременно является и фазопереходным тепловым аккумулятором, два адсорбера, попеременно работающих в режиме осушки и регенерации, канальный вентилятор, систему трубопроводов с запорно-регулирующей арматурой, отличающийся тем, что для обеспечения круглосуточной и бесперебойной осушки увлажненного адсорбента, находящегося в одном из адсорберов, работающем в режиме регенерации, он содержит дополнительный гелиоприемник с фазопереходным тепловым аккумулятором.

Документы, цитированные в отчете о поиске Патент 2020 года RU2734395C1

SU 1288475 A2, 07.02.1987
Способ сушки дисперсных материалов 1977
  • Эльперин Исаак Тевелевич
  • Любошиц Александр Исаакович
  • Майсоценко Валерий Степанович
  • Мельцер Валентин Леонидович
  • Цимерман Александр Бенционович
  • Печерская Ирина Морисовна
  • Зексер Михаил Гершевич
  • Фролов Виталий Николаевич
SU661203A1
Устройство для сушки продуктов 1980
  • Ласло Сюч
  • Андраш Хорват
  • Эмед Шигмонд
  • Имре Сабо
  • Верона Тот
SU1327799A3
Установка для очистки воздуха,отходящего из сушильной и окрасочной камер 1981
  • Пепеляев Юрий Григорьевич
  • Духанин Виктор Павлович
  • Архипов Александр Федорович
  • Аленков Владимир Александрович
SU987338A1
CN 104011490 B, 14.09.2016.

RU 2 734 395 C1

Авторы

Дибиров Яхя Алиевич

Алхасов Алибек Басирович

Дибиров Камиль Яхяевич

Даты

2020-10-15Публикация

2019-11-18Подача