Область техники, к которой относится изобретение
Настоящее изобретение относится к области сельскохозяйственной биотехнологии, в частности, к применению фурокумаринов для стимулирования естественной защиты и индуцирования устойчивости растений к болезни. При нанесении фурокумаринов обеспечивается высокая степени защиты от болезней растений.
Уровень техники
В последние десятилетия проведены многочисленные исследования взаимодействий растение - патоген с морфологической, физиологической, биохимической и молекулярной точек зрения. Однако полученные до последнего времени результаты не соответствуют требованиям и задачам большинства исследовательских групп во всем мире и не получена информация о стабильной и эффективной защите сельскохозяйственных культур. Несмотря на многочисленные меры, принимающиеся во всем мире для систематической защиты сельскохозяйственных культур, ежегодно сообщают о больших потерях сельскохозяйственных культур вследствие болезней, достигающих 80% от урожая, в особенности в случаях эпидемий (Gao et al. (2000) Nature Biotechnol. 18: 1307-1310).
Растения и патогены в течение миллионов лет эволюционировали совместно. При этом взаимодействии возникли стратегии, которые позволяют растениям распознавать инвазивные патогены и запускать успешную защиту. Аналогичным образом, у патогенов развились механизмы, которые позволяют им не поддаваться защитным реакциям растений или подавлять их. Влияние этого селективного воздействия на растения привели к улучшению их механизмов защиты. В результате, возможность патогена вызывать болезнь является не правилом, а исключением (Staskawicz (2001) Plant Physiology 125: 73-76).
Распознавание растениями специфических и общих элиситоров не только обеспечивает распознавание патогенов, но и обеспечивает передачу сигналов активаторов механизмов защиты. В число различных активированных путей передачи сигналов входят опосредуемые такими промежуточными продуктами, как реакционноспособный кислород, салициловая кислота, этилен и жасмоновая кислота. Пересечение этих путей передачи сигналов фитогормона приводит к образованию регулирующего потенциала, который обеспечивает активацию оптимальной комбинации реакций в зависимости от конкретного патогена. Также активируется экспрессия генов, связанных с патогенностью (PR) и синтез противомикробных соединений, которыми обычно являются фитоалексины, дефензины, фенолы и флавоноиды, продуцируемые для прямого воздействия на патоген (Baker et al. (1997) Science 276: 726-733).
Также имеются другие механизмы защиты, которые действуют в растениях, действие которых сохраняется в течение относительно длительного времени после инфицирования. Ими являются: локальный приобретенный ответ и системный приобретенный ответ. Локальный приобретенный ответ наблюдается в кольце клеток толщиной 5-10 мм вокруг поражений, вызванных реакцией сверхчувствительности. Этот участок характеризуется значительным накоплением связанных с патогенезом белков, преимущественно основных (Fritig et al. (1998) Current Opinion of Immunology 10: 16-22), и стимулированием ферментов, таких как метилтрансферазы (Legrand et al. (1978) Planta 144: 101-108), фенилпропаноидного пути, который участвует в продуцировании антибиотиков, таких как скополетин, который не обеспечивает подходящего окружения для патогенов, предупреждая их распространение по растению.
Системный приобретенный ответ придает растению более высокую степень устойчивости по отношению к последующему инфицированию тем же патогеном. Он развивается не только в инфицированных тканях, но и по всему растению. Он характеризуется накоплением белков PR, в особенности кислых, которые связаны с механизмом передачи сигнала салициловой кислоты (Cordelier et al. (2003) Plant Molecular Biology 51: 109-118).
Важной проблемой, которая продолжает оставаться в сельском хозяйстве, является недостаточная борьба с болезнями растений, которая постоянно ограничивает объем сельскохозяйственной продукции во всем мире. Поэтому, несмотря на достигнутые успехи, необходима разработка новых соединений, которые могли бы быть полезными для индуцирования устойчивости к болезням растений, для обеспечения более эффективной борьбы с ними.
Описание изобретения
Настоящее изобретение способствует решению указанной выше задачи о раскрытии эффективных соединений для стимулирования естественной защиты и индуцирования устойчивости к болезням растений. Таким образом, настоящее изобретение относится к способу лечения или предупреждения болезней растений, в котором эффективное количество композиции, содержащей по меньшей мере соединение структуры, описывающейся одной из формул I - V
в которых:
R означает один или большее количество заместителей, выбранных из группы, включающей водород, гидроксигруппу, галоген, алкил C1-12, гетероалкил C1-12, циклоалкил C3-7, гетероциклоалкил C3-7, арил, гетероарил, арилалкил C1-3, гетероарилоалкил C1-3, арилоциклоалкил C1-7, гетероарилоциклоалкил C1-7, алкил C1-3 циклоалкил C3-7, гетероалкил C1-3 циклоалкил C3-7
или его солей наносят на растения.
Определения
Термин "алкил" означает алифатический углеводородный радикал, обладающий линейной (т. е. неразветвленной) или разветвленной цепью, обладающий указанным количеством атомов углерода (т. е. "алкил C1-C10" соответствует алкилу, который может содержать от 1 до 10 атомов углерода). Алкильный радикал может быть полностью насыщенным, моно- или полиненасыщенным и может содержать ди- и многовалентные радикалы. Примеры насыщенных углеводородных радикалов включают, но не ограничиваются только ими, такие группы, как метил, этил, н-пропил, изопропил, 2,3-диметилбутил и др. Примеры ненасыщенных углеводородных радикалов включают, но не ограничиваются только ими, такие группы, как винил, 2-пропенил, 2-бутадиенил, 1,4-гексадиенил, 1,3-пентадиенил, этинил, 3-пропинил, 3-бутинил, 2,4-пентадиенил и др. Отметим, что термин "алкил" при использовании в настоящем изобретении включают алифатические углеводородные радикалы, обладающие линейной или разветвленной цепью. Примеры двухвалентных алкильных радикалов включают, но не ограничиваются только ими, -CH2CH2CH2CH2-; -CH2CH═CHCH2-; -CH2C≡CCH2-; -CH2CH2CH(CH2CH2CH3)CH2- и др.
Термин "гетероалкил" по отдельности или в комбинации с другим термином, означает алифатический углеводородный радикал, обладающий линейной (т. е. неразветвленной) или разветвленной цепью, содержащий по меньшей мере один атом углерода и по меньшей мере один гетероатом, выбранный из числа следующих: O, N, P, Si и S. Гетероатомы в гетероалкильном радикале могут быть одинаковыми или разными. Гетероатом может находиться в лубом внутреннем положении гетероалкильной группы или в положении, в котором алкильная группа присоединена к остальной части молекулы. Гетероалкильный радикал может быть полностью насыщенным, моно- или полиненасыщенным и может включать ди- и многовалентные радикалы. Примеры гетероалкильных радикалов включают, но не ограничиваются только ими, -CH2-CH2-O-CH3, -CH2-CH2-NH-CH3, -CH2-S-CH2-CH3, -CH2-CH2-S(O)-CH3, -CH2-CH2-S(O)2-CH3, -CH═CH-O-CH3, -CH2-CH═N-OCH3, -CH═CH-N(CH3)-CH3, -O-CH2-CH3 и др. В гетероалкильном радикале до двух или трех гетероатомов могут арсполагаться последовательно, например, как в -CH2-NH-OCH3 y -CH2-O-Si(CH3)3. Отметим, что термин "гетероалкил" при использовании в настоящем изобретении включает алифатические углеводородные радикалы, обладающие линейной или разветвленной цепью, содержащие по меньшей мере один атом углерода и по меньшей мере один гетероатом. Примеры двухвалентного гетероалкил включают, но не ограничиваются только ими, -CH2-CH2-S-CH2-CH2- и -CH2-S-CH2-CH2-NH-CH2-.
Термины "циклоалкил" и "гетероциклоалкил", по отдельности или в комбинации с другими терминами, означают производные алициклических углеводородных радикалов, содержащих одно или большее количество конденсированных колец или ковалентно связанных колец, кольца, которые могут быть насыщенными, моно или полиненасыщенными, и в случае "циклоалкила" кольца включают только атомы углерода и водорода, а в случае "гетероциклоалкила" кольца включают по меньшей мере один гетероатом из числа следующих: O, N и S. Примеры моноциклического циклоалкила включают, но не ограничиваются только ими, циклопентил, циклогексил, 1-циклогексенил, 2-циклобутинил, 1,3-циклогексадиенил и др. Примеры циклоалкила, состоящего из нескольких ковалентно связанных колец, включают, но не ограничиваются только ими, циклобутилциклопентил и др. Примеры циклоалкила, образованного несколькими конденсированными кольцами, включают полициклические соединения, содержащие два или большее количество атомов углерода, общих для двух или большего количества колец, например, бицикло[4.2.0]октанил, бицикло[3.1.1]гептанил, бицикло[4.4.0]деканил и др; и бициклические соединения, содержащие только один атом углерода, общий для обоих колец, известные, как спираны, например, спиро[3,4]октанил.
Примеры гетероциклоалкила включают, но не ограничиваются только ими, тетрагидрофуранил, тетрагидропиранил, диоксанил, пиперидинил, морфолинил, пиперазинил, пирролидинил, тиоланил и др. Отметим, что термины "циклоалкил" и "гетероциклоалкил" включают двухвалентные алициклические углеводородные радикалы, образованные одним или большим количеством колец, конденсированных или ковалентно связанных, где такие кольца могут быть полностью насыщенными, моно- или полиненасыщенными, а в случае циклоалкила кольца образованы только атомами углерода и водорода, тогда как в случае гетероциклоалкила содержится по меньшей мере один гетероатом.
Термин "арил" означает ароматический полиненасыщенный углеводородный радикал, который может представлять собой одно кольцо (т. е. фенил) или несколько колец (предпочтительно от 1 до 3 колец), сконденсированных (т. е. нафтил, антрил и др.) или ковалентно связанных друг с другом (т. е. бифенил).
Термин "гетероарил" означает ароматический углеводородный радикал (предпочтительно от 1 до 3 колец), содержащий по меньшей мере один гетероатом из числа следующих: N, O и S ( каждом отдельном кольце в случае нескольких колец). Примеры "арильных" и "гетероарильных" групп включают, но не ограничиваются только ими, 1-нафтил, 4-бифенил, 1-пирролил, 3-пиразолил, 2-имидазолил, пиразинил, 2-оксазолил, 2-тиазолил, 3-фурил, 2-тиенил, 4-пиридил, 2-бензотиазолил, пуринил, 5-индолил, 6-изохинолил и др. Термины "арил" и "гетероарил" включают двухвалентные радикалы, образованные из ароматического углеводорода, состоящие только из атомов углерода и водорода в первом случае, и двухвалентные радикалы, образованные из ароматического углеводорода, содержащего одно или большее количество колец, состоящих из атомов углерода и водорода вместе по меньшей мере с одним гетероатомом.
Термин "арилалкил" включает радикалы, в которых арильная группа присоединена к одной или большему количеству алкильных групп (например, бензил, фенил, стирол и др.). Термин "гетероарилалкил" означает радикалы, образованные из одной или большего количества гетероалкильных групп, присоединенных к одной или большему количеству арильных групп, и/или радикалы, образованные из одной или большего количества гетероарильных групп, присоединенных к одной или большему количеству алкильных групп (например, 2,5-диметилфуран), и/или радикалы, образованные из одной или большего количества гетероарильных групп, присоединенных к одной или большему количеству гетероалкильных групп.
Термин "арилциклоалкил" означает радикалы, образованные из одной или большего количества арильных групп, присоединенных к одной или большему количеству циклоалкильных групп (например, бензил, фенил, кумол, стирол, винилбензол и др.). Термин "гетероарилциклоалкил" означает радикалы, образованные из одной или большего количества гетероарильных групп, присоединенных к одной или большему количеству циклоалкильных групп, и/или радикалы, образованные из одной или большего количества гетероциклоалкильных групп, присоединенных к одной или большему количеству арильных групп, и/или радикалы, образованные из одной или большего количества гетероциклоалкильных групп, присоединенных к одной или большему количеству гетероарильных групп.
Термин "алкилциклоалкил" означает радикалы, образованные из одного или большего количества циклоалкильных колец, замещенных одним или большим количеством алкильных радикалов. Термин "гетероалкилциклоалкил" означает радикалы, образованные из одной или большего количества гетероалкильных групп, присоединенных к одной или большему количеству циклоалкил колец, и/или радикалы, образованные из одной или большего количества гетероциклоалкильных групп, замещенных одной или большим количеством алкильных групп, и/или радикалы, образованные из одной или большего количества гетероциклоалкильных групп, замещенных одной или большим количеством гетероалкильных групп.
Термин "оксогруппа" означает атом кислорода, который связан двойной связью, например, с любым из следующих атомов: углерод, азот, сера и фосфор. Термин "галоген" означает атомы фтора, хлора, брома и йода. Термин "гетероатом" означает любой атом кроме углерода или водорода, обычно кислород, азот, серау, фосфор, бор, хлор, бром или йод.
В таблицах, приведенных ниде в качестве примеров представлены соединения, структура которых описывается одной из формул I - V. Однако соединения, указанные в настоящем изобретении, не ограничиваются соединениями, приведенными в таблицах 1-5.
В таблице 1 приведены примеры соединений, описывающихся формулой I, предлагаемых в настоящем изобретении.
Таблица 1. Химические соединения, описывающиеся формулой I.
В таблице 2 приведены примеры соединений, описывающихся формулой II, предлагаемых в настоящем изобретении.
Таблица 2. Химические соединения, описывающиеся формулой II.
В таблице 3 приведены примеры соединений, описывающихся формулой III, предлагаемых в настоящем изобретении.
Таблица 3. Химические соединения, описывающиеся формулой III.
В таблице 4 приведены примеры соединений, описывающихся формулой IV, предлагаемых в настоящем изобретении.
Таблица 4. Химические соединения, описывающиеся формулой IV.
В таблице 5 приведены примеры соединений, описывающихся формулой V, предлагаемых в настоящем изобретении.
Таблица 5. Химические соединения, описывающиеся формулой V.
В одном варианте осуществления настоящего изобретения раскрытый способ используют для лечения болезни, вызванной фитопатогеном, выбранным из группы, включающей бактерии, оомицеты, грибы и нематоды. В предпочтительном варианте осуществления способ используют для лечения болезни Huanglongbing (HLB), вызванной фитопатогеном бактерией Candidatus 'Liberibacter asiaticus'.
В одном варианте осуществлении настоящего изобретения в раскрытом способе композиция содержит от 0,01 мкМ до 5 мкМ соединения структуры, описывающейся одной из формул I - V. В другом варианте осуществлении указанное соединение наносят на растения один или два раза в месяц.
Композиция для сельского хозяйства, которая содержит по меньшей мере одно из соединений структуры, описывающейся одной из формул I - V, или его соли и подходящий инертный наполнитель или носитель, также является объектом настоящего изобретения.
В настоящем изобретении указанные соединения можно приготовить в виде суспензии, раствора, эмульсии, порошка, гранул, концентрата эмульсии, аэрозоля, пропитанных гранул, вспомогательных веществ, пасту или путем капсулирования. Указанные препараты получают по известным методикам, например, путем смешивания активного компонента со средствами, увеличивающими объем, поверхностно-активными веществами, эмульгаторами и/или диспергирующими средствами и подходящими носителями.
В одном варианте осуществления настоящего изобретения содержание в композиции активного соединения, т. е. по меньшей мере одного из соединений, описывающихся формулой, выбранной из числа формул I - V, находится в диапазоне от 0,01 мкМ до 5 мкМ. В предпочтительном варианте осуществления композицию наносят на растения для лечения болезни, вызванной бактерией Candidatus 'Liberibacter asiaticus', возбудителя болезни HLB.
Другим объектом настоящего изобретения является применение соединения, обладающего структурой, описывающейся одной из формул I - V, или его солей для стимулирования естественной защиты и индуцирования устойчивости к болезням растений.
В настоящее время индуцирование устойчивости к болезням растений является важным и привлекательным способом, который позволяет использовать уже имеющиеся в растении биохимические и молекулярные механизмы для борьбы с болезнью. Защита растения от болезней включает последовательность событий, связанных с распознаванием, передачей сигнала и ответом, определяемыми, как видовой иммунитет растений. Этот видовой иммунитет может активироваться целым рядом факторов, которые, несомненно, вносят вклад в борьбу с болезнью. В число возможных механизмов защиты, которые активируются растением, в частности, входит синтез противомикробных соединений, таких как фитоалексины, дефензины и связанные с патогенезом белки. Эти ответы опосредуются активацией генов, связанных с салициловой кислотой, жасмоновой кислотой/этиленом и реакцией сверхчувствительности.
В настоящем изобретении показано, что после обработки соединениями формулы, выбранной из числа формул I - V, происходит активация генов GST1, PR1 и PDF1.2, которые являются маркерами салициловой кислоты, жасмоновой кислоты/этилена и реакции сверхчувствительности.
Следовательно, настоящее изобретение также включает применение соединений, которые обладают структурой, описывающейся одной из формул I - V, или их солей для приготовления композиции для предупреждения или лечения болезней растений. Предупреждение или лечение указанных болезней обеспечивается активацией генов, связанных с путем салициловой кислоты, жасмоновой кислоты/этилена и реакции сверхчувствительности. В одном варианте осуществления настоящее изобретение относится к предупреждению или лечению болезней растений, вызванных бактериями, оомицетами, грибами и нематодами.
В предпочтительном варианте осуществления обработка соединениями структуры, описывающейся одной из формул I - V, в диапазоне концентраций 0,01-5 мкМ обеспечивает резкое уменьшение количества возбудителей болезни. Это обеспечивается путем уменьшения количества копий бактерии, оомицета, гриба или нематоды после обработки инфицированных растений соединениями, раскрытыми в настоящем изобретении. В предпочтительном варианте осуществления фитопатогеном является бактерия Candidatus 'Liberibacter asiaticus'. В более предпочтительном варианте осуществления соединения структуры, описывающейся одной из формулы I - V, получают путем химического синтеза.
Краткое описание чертежей
Фиг. 1. Относительная экспрессия генов, связанных с защитными реакциями по отношению к болезням растений Arabidopsis thaliana (резуховидка Таля), обработанных соединениями в концентрации, равной 1 мкМ. Столбик на диаграмме означает стандартное отклонение среднего для 10 растений для каждого соединения. Исследованные гены связаны с устойчивостью к болезни растения, A: по пути салициловой кислоты (PR1: связанный с патогенезом белок), B: по пути жасмоновая кислота/этилен (PDF1.2: дефензин) и C: по пути реакции сверхчувствительности (GST1: глутатион-S-трансфераза).
Фиг. 2. Относительная экспрессия генов, связанных с защитными реакциями по отношению к болезням цитрусовых растений, обработанных соединениями в концентрации, равной 1 мкМ. Столбик на диаграмме означает стандартное отклонение среднего для 10 растений для каждого соединения. Исследованные гены связаны с устойчивостью растений по пути A: AOS: алленоксидсинтазы; B: PAL: фенилаланинаммонийлиазы.
Фиг. 3. Влияние соединений, в концентрации, равной 1 мкМ, на уменьшение титров патогенной бактерии - возбудителя болезни HLB в растущих цитрусовых растениях. В качестве контроля использовали растения, обработанные водой. Для каждой обработки использовали 10 растений. Титры бактерий определяли каждые 3 месяца в течение года.
Фиг. 4. Влияние частоты нанесения соединений на уменьшение титров бактериального возбудителя болезни HLB. Соединение наносили в концентрации, равной 1 мкМ. Титры бактерий определяли в течение 6 месяцев.
Подробное описание изобретения/примеры
Пример 1. Активация генов, связанных с естественной устойчивостью растений к болезни, после обработки растений Arabidopsis thaliana соединениями формулы I - V
Растения Arabidopsis thaliana обрабатывали соединениями в концентрации, равной 1 мкМ. Листья с 10 растений собирали через 24 ч после нанесения опрыскиванием. Всю РНК экстрагировали из листьев с использованием набора RNeasy (Qiagen, Valencia, CA) в соответствии с инструкциями изготовителя, что включало обработку ДНКазой. кДНК синтезировали с помощью праймера oligo-dT и набора для обратной транскрипции SuperScript III (Invitrogen, Carlsbad, CA) в соответствии с инструкциями изготовителя. Количественную ПЦР (полимеразная цепная реакция) в реальном масштабе времени проводили с использованием машины RotorGene 3000 PCR (Corbett, Australia) и набора QuantiTect SYBR Green PCR (Qiagen). Все последовательности праймеров генов, связанных с защитой от болезней растений Arabidopsis thaliana, приведены в таблице 6. Условия проведения ПЦР в реальном масштабе времени были следующими: начальная стадия денатурации при 95°C в течение 15 мин с последующей денатурацией при 95°C в течение 15 с, стадия выравнивания в течение 30 с при 60°C и стадия удлинения в течение 30 с при 72°C с использованием 40 циклов. Анализ проводили с использованием программного обеспечения RotorGene 3000 (Corbett, Australia) и 5 повторов для каждого образца. Эксперименты повторяли дважды.
Таблица 6. Олигонуклеотиды, использованные для обнаружения генов, связанных с защитой от болезней в растениях Arabidopsis thaliana.
TGCATGATCACATCATTACTTC
ACGCTCGTCGAAGAGTTTCT
TGTCCCACTTGGCTTCTCGC
ATGGTCTTTCCGGTGAGAG
На фиг. 1 представлено, как все исследуемые гены были активированы после обработки растений Arabidopsis thaliana химическими соединениями, описывающимися формулой I - V. Гены PR1, GST и PDF1.2 играют важную роль в видовом иммунитете по отношению к болезням растений, вызванных грибом, бактерией и оомицетом. Примечательно, что это поведение может обеспечить прогнозирование взаимосвязи между его активацией и биологической активностью.
Пример 2. Активация генов, связанных с естественной устойчивостью растений к болезням, после обработки цитрусовых растений соединениями формулы I - V
Цитрусовые растения (Citrus sinensis) обрабатывали соединениями формулы I - V в концентрации, равной 1 мкМ. Листья с 10 растений собирали через 24 ч после нанесения опрыскиванием. Всю РНК экстрагировали из листьев с использованием набора RNeasy (Qiagen, Valencia, CA) в соответствии с инструкциями изготовителя, что включало обработку ДНКазой. кДНК синтезировали с помощью праймера oligo-dT и набора для обратной транскрипции SuperScript III (Invitrogen, Carlsbad, CA) в соответствии с инструкциями изготовителя. Количественную ПЦР в реальном масштабе времени проводили с использованием машины RotorGene 3000 PCR (Corbett, Australia) и набора QuantiTect SYBR Green PCR (Qiagen). Все последовательности праймеров генов, связанных с защитой от болезней цитрусовых растений приведены в таблице 7. Условия проведения ПЦР в реальном масштабе времени были следующими: начальная стадия денатурации при 95°C в течение 15 мин с последующей денатурацией при 95°C в течение 15 с, стадия выравнивания в течение 30 с при 60°C и стадия удлинения в течение 30 с при 72°C с использованием 40 циклов. Анализ проводили с использованием программного обеспечения RotorGene 3000 (Corbett, Australia) и 5 повторов для каждого образца. Эксперименты повторяли дважды.
Таблица 7. Олигонуклеотиды, использованные для обнаружения генов, связанных с защитой от болезней цитрусовых растений.
acatgattggtgacaggattgg
CGTGCGGAGCAATGGTTC
tggatggaccagactcatca
На фиг. 2 представлено, как все исследуемые гены (PAL и AOS) были активированы после обработки цитрусовых растений соединениями. Соединения, выявленные в настоящем изобретении, были способны активировать защиту в цитрусовых растениях, таких как растения Arabidopsis thaliana.
Пример 3. Исследование влияния соединений формулы I - V на борьбу с болезнью HLB в цитрусовых растениях
Эксперимент проводили в теплице. Растения с симптомами HLB помещали в черные пластиковые мешки с подходящим режимом орошения. Содержание бактерий Candidatus 'Liberibacter asiaticus' в растениях с симптомами HLB определяли с помощью ПЦР в реальном масштабе времени путем абсолютного количественного определения содержания бактерий в листьях с помощью калибровочной кривой и 16S рибосомной ДНК, амплифицированной бактериями. До проведения эксперимента отбирали по 10 растений для каждой обработки. Количественное определение содержания бактерий проводили каждые 3 месяца в течение года. Последнюю оценку проводили с использованием всех листьев растения и приготовления смеси до выделения ДНК. Концентрация соединений формулы I - V равнялась 1 мкМ и их наносили опрыскиванием каждые 15 дней. ДНК экстрагировали из листьев по методике выделения ДНК фирмы Promega.
Количественную ПЦР в реальном масштабе времени проводили с использованием машины RotorGene 3000 PCR (Corbett, Australia) и набора QuantiTect SYBR Green PCR (Qiagen). Для количественного определения содержания бактерий использовали следующие олигонуклеотиды: CTAATCCCCAAAAGCCATCTC и CTTCAGGCAAAACCAACTCC. Условия проведения ПЦР в реальном масштабе времени были следующими: начальная стадия денатурации при 95°C в течение 15 мин с последующей денатурацией при 95°C в течение 15 с, стадия выравнивания в течение 30 с при 60°C и стадия удлинения в течение 30 с при 72°C с использованием 40 циклов. Анализ проводили с использованием программного обеспечения RotorGene 3000 (Corbett, Australia) и 5 повторов для каждого образца. Эксперименты повторяли дважды. Как можно видеть, в растениях, обработанных соединениями формулы I - V, происходило значительное уменьшение содержания бактерий и начиная с месяца 4 содержание становилось необнаруживаемым и сохранялось до последнего определения, проводившегося в конце эксперимента (фиг. 3). В качестве контроля использовали больные растения, обработанных водой вместо растворов соединений. В указанных растениях за все время исследования содержание бактерии оставалось близким к обнаруживаемому в начале эксперимента.
Пример 4. Исследование влияния разных концентраций соединений формулы I - V на борьбу с болезнью HLB в цитрусовых растениях.
Задачей этого эксперимента являлось определение минимальной концентрации соединений формулы I - V, необходимой для борьбы с болезнью HLB в цитрусовых растениях. Для каждой дозы использовали 10 растущих цитрусовых растений (Citrus sinensis), зараженных HLB. Использовали следующие концентрации: 0,001, 0,01, 0,1, 1, 5 и 10 мкМ, и соединения наносили опрыскиванием каждые 15 дней в течение 12 месяцев. Определение проводили через 12 месяцев после обработки. Содержание бактерий Candidatus 'Liberibacter asiaticus' определяли, как в примере 3. Среднее значение титров бактерии в растениях составляло примерно 6000 копий на реакцию. Как показано в таблице 8, начиная с концентраций исследуемых соединений, равных от 0,01 до 5 мкМ, содержание бактерии резко уменьшалось.
Таблица 8. Исследование влияния разных концентраций соединений на бактериальный возбудитель болезни HLB.
* Титры бактерии (через 12 месяцев после обработки соединениями при указанной концентрации).
Пример 5. Исследование влияния частоты нанесения соединений на борьбу с болезнью HLB цитрусовых растений.
Задачей этого эксперимента являлось исследование влияния частоты нанесения опрыскиванием соединения на борьбу с болезнью HLB цитрусовых растений в зараженных цитрусовых растениях. Для каждой обработки использовали 10 растений и частоты нанесения были следующими: один и два раза в месяц в течение 6 месяцев. Использовавшаяся концентрация равнялась 1 мкМ и определение содержания бактерии проводили каждый месяц. Содержание бактерий Candidatus 'Liberibacter asiaticus' определяли, как в примере 3. Как можно видеть на фиг. 4, уменьшение содержания бактерий наблюдалось в обоих вариантах исследования. Нанесение один раз в месяц приводило к более значительному уменьшению содержание бактерии, чем нанесение два раза в месяц.
Пример 6. Исследование влияния соединений формулы I - V на борьбу с другими болезнями растений
Для сопоставления влияния соединений формулы I - V на борьбу с болезнями в разных растениях, эксперименты проводили в табаке, томатах и растениях Arabidopsis thaliana, зараженных с помощью Phytophthora parasitica, Rhizoctonia solani, Alternaria solani, Nocardia sp и Botrytis cinerea соответственно. Соединения наносили опрыскиванием в концентрации, равной 1 мкМ, каждые 24 ч в течение 1 недели. Для болезни, вызванной Phytophthora parasitica, Rhizoctonia solani и Nocardia sp., определяли количество погибших растений, тогда как для инфицирования с помощью Alternaria solani определяли выраженную в процентах долю листьев с симптомами. В случае растений, зараженных Botrytis cinerea, измеряли диаметр поражения. В таблице 9 показано, что соединения оказывали заметное влияние на уменьшение количества погибших растений, пораженных различными болезнями растений, также наблюдалось ослабление вызванных ими симптомов. При каждой обработке использовали 50 растений. В качестве контроля исследовали растения, обработанные водой. Растения для каждой обработки предварительно инокулировали указанными патогенами в соответствии с разными методиками инокуляции (Frontiers in Plant Science 3: 268, 1-6, 2012) и затем их обрабатывали соединениями.
Таблица 9. Влияние исследуемых соединений на борьбу с разными болезнями растений, вызванными грибами, оомицетами и бактериями.
Pp-Nt: Phytophthora parasitica - табак; Rs-Nt: Rhizoctonia solani - табак; N-Nt: Nocardia sp - табак; Rs-Sl: Rhizoctonia solani - томаты; As-Sl: Alternaria solani - tomato; Bc-At: Botrytis cinerea - Arabidopsis thaliana; Bc-Nt: Botrytis cinerea - табак; Bc-Sl: Botrytis cinerea - томаты. * Числа означают выраженную в процентах (%) гибель от указанной болезни. ** Числа означают выраженную в процентах (%) долю листьев с симптомами болезни. *** Числа означают среднее значение диаметра (мм) поражения, вызванного болезнью.
Пример 7. Исследование защитного эффекта соединений формулы I - V по отношению к болезни HLB цитрусовых растений
Этот эксперимент проводили для определения защитного влияния нанесения соединений, проводимого один раз в месяц, в концентрации, равной 1 мкМ, на цитрусовые растения без симптомов HLB, на участке с цитрусовыми растениями, зараженными HLB и содержащем большую популяцию насекомых-переносчиков. При каждой обработке исследовали 10 цитрусовых растений без HLB, и на них путем опрыскивания наносили раствор исследуемого соединения; и 10 цитрусовых растений без HLB не обрабатывали соединениями. Содержание бактерии Candidatus 'Liberibacter asiaticus' определяли, как в примере 3.
Обработка цитрусовых растений без HLB соединениями формулы I - V обеспечивала защиту указанных растений от бактериальной инфекции, вносимой переносчиком. В указанных обработанных растениях титры бактерии оставались очень низкими, равными от 1 до 4, а в необработанных растениях, на которые не наносили соединения; содержание бактерий увеличивалось с течением месяцев. В начале эксперимента титры бактерии на необработанных растениях равнялись 5621, тогда как через год средний титр увеличивался до 6584. В указанных контрольных растениях, не обработанных соединениями, через 2 года титры бактерий продолжали увеличиваться до 8456. Симптомы болезни HLB также усиливались в контрольных растениях, которые оставались необработанными. Результат, полученный после нанесения соединений формулы I - V, являлся неожиданным позволяет применять композиций, которые содержат указанные соединения, для защиты цитрусовых растений от указанной важной болезни.
Пример 8. Исследование защитного эффекта соединений формулы I - V в случае поражений, вызванных нематодами
Растворы соединений для некорневого нанесения готовили в этаноле и разбавляли водой до концентрации, равной 1 мкМ. Нанесения проводили каждые 5 дней с опрыскиванием каждым соединением только листьев. Для каждой обработки использовали 10 растений и конечную оценку проводили через 35 дней путем количественного определения количества узелков в пересчете на растение. Как показано в таблице 10, соединения оказывали системное воздействие на нематоды и в исследованных растениях значительно уменьшалось количество узелков в пересчете на растение. Таким образом была продемонстрирована эффективность соединений для борьбы с большими популяциями паразитирующих на растениях нематод Meloidogyne incognita, Radopholus similis и Pratylenchus coffeae в томатах, бананах и овощных бананах.
Таблица 10. Влияние соединений формулы I - V на борьбу с нематодой.
Rs: Radopholus similis; Mi: Meloidogyne incognita; Pc: Pratylenchus coffeae.
* Числа указывают количество узелков в пересчете на растение.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИНДУЦИРОВНИЯ УСТОЙЧИВОСТИ К БОЛЕЗНЯМ У РАСТЕНИЙ | 2012 |
|
RU2596923C2 |
ПРИМЕНЕНИЕ СТИМУЛЯТОРОВ ИММУННОЙ ЗАЩИТЫ ДЛЯ БОРЬБЫ С ВРЕДНЫМИ БАКТЕРИАЛЬНЫМИ ОРГАНИЗМАМИ НА КУЛЬТУРНЫХ РАСТЕНИЯХ | 2013 |
|
RU2628290C2 |
МОДУЛЯТОРЫ ПРОТЕОЛИЗА НА ОСНОВЕ ИМИДОВ И СВЯЗАННЫЕ С НИМИ СПОСОБЫ ПРИМЕНЕНИЯ | 2016 |
|
RU2704807C2 |
ЗОНДЫ ВИЗУАЛИЗАЦИИ БЕЛКА ГЕНТИНГТИНА | 2016 |
|
RU2721419C2 |
ИМИДНЫЕ МОДУЛЯТОРЫ ПРОТЕОЛИЗА И СПОСОБЫ ИХ ПРИМЕНЕНИЯ | 2015 |
|
RU2738833C2 |
МОДУЛЯТОРЫ АТФ-СВЯЗЫВАЮЩИХ КАССЕТНЫХ ТРАНСПОРТЕРОВ | 2008 |
|
RU2512682C2 |
ПРОИЗВОДНЫЕ КАЛИХЕАМИЦИНА И ИХ КОНЪЮГАТЫ "АНТИТЕЛО-ЛЕКАРСТВЕННОЕ СРЕДСТВО" | 2018 |
|
RU2732568C1 |
МОДУЛЯТОРЫ ТРАНСПОРТЕРОВ АТФ-СВЯЗЫВАЮЩЕЙ КАССЕТЫ | 2012 |
|
RU2640420C2 |
СИНТЕЗ КАРБАМОИЛПИРИДОНОВЫХ ИНГИБИТОРОВ ИНТЕГРАЗЫ ВИЧ И ПРОМЕЖУТОЧНЫХ СОЕДИНЕНИЙ | 2009 |
|
RU2527451C2 |
ЗАМЕЩЕННЫЕ ТРИЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ И СПОСОБ ПРИМЕНЕНИЯ | 2016 |
|
RU2744766C2 |
Для борьбы с болезнями растений используют композицию, содержащую соединение, обладающее структурой, описывающейся одной из формул I-V
которую наносят на растения. Изобретение позволяет повысить эффективность способа. 3 н. и 6 з.п. ф-лы, 10 табл., 4 ил., 8 пр.
1. Способ лечения и предупреждения болезней растений, вызванных фитопатогенами, выбранными из Candidatus 'Liberibacter asiaticus', Pseudomonas, Phytophthora; Rhizoctonia; Nocardia; Alternaria, Botrytis Radopholus, Meloidogyne, Pratylenchus, характеризующийся нанесением на растения эффективного количества композиции, содержащей по меньшей мере соединение структуры, представленной одной из формул I-V
в которых:
R означает элемент, выбранный из группы, включающей водород, алкил C1-6, циклоалкил C3-7, фенил и пиррол.
2. Способ по п. 1, в котором фитопатогеном является бактерия Candidatus 'Liberibacter asiaticus'.
3. Способ по п. 1, в котором композиция содержит от 0,01 до 5 мкМ указанного соединения.
4. Способ по п. 1, в котором соединение наносят на растения один или два раза в месяц.
5. Композиция для лечения и предупреждения болезней растений, вызванных фитопатогенами, выбранными из Candidatus 'Liberibacter asiaticus', Pseudomonas, Phytophthora; Rhizoctonia; Nocardia; Alternaria, Botrytis Radopholus, Meloidogyne, Pratylenchus, которая содержит по меньшей мере соединение структуры, представленной одной из формул I-V
в которых:
R означает элемент, выбранный из группы, включающей водород, алкил C1-6, циклоалкил C3-7, фенил и пиррол, и подходящий инертный наполнитель или носитель.
6. Композиция по п. 5, в которой содержание соединения формулы I-V находится в диапазоне 0,01-5 мкМ.
7. Композиция по п. 6, характеризующаяся нанесением на растения для лечения болезни, вызванной бактерией Candidatus 'Liberibacter asiaticus'.
8. Применение соединения, имеющего структуру, представленную одной из формул I-V
в которых:
R означает элемент, выбранный из группы, включающей водород, алкил C1-6, циклоалкил C3-7, фенил и пиррол,
для приготовления композиции для лечения и предупреждения болезней растений, вызванных фитопатогенами, выбранными из Candidatus 'Liberibacter asiaticus' , Pseudomonas, Phytophthora; Rhizoctonia; Nocardia; Alternaria, Botrytis Radopholus, Meloidogyne, Pratylenchus.
9. Применение по п. 8, в котором фитопатогеном является бактерия Candidatus 'Liberibacter asiaticus'.
CN 102067850 A, 25.05.2011 | |||
СЕЛЬСКОХОЗЯЙСТВЕННЫЕ КОМПОЗИЦИИ | 2010 |
|
RU2526632C2 |
Авторы
Даты
2020-12-30—Публикация
2016-08-01—Подача