Область техники
[0001] Изобретение относится к гибридному транспортному средству и к способу его управления.
Уровень техники
[0002] Существует известный контроллер, который, когда величина SOx-отравления каталитического устройства, размещенного в выхлопном канале двигателя внутреннего сгорания, превышает предварительно определенное значение, выполняет управление повышением температуры каталитического нейтрализатора (управление по возмущению), включающее установку соотношений воздух-топливо для некоторых из цилиндров (обогащенных цилиндров) в богатые соотношения, в то же время устанавливая соотношения воздух-топливо для других цилиндров (обедненных цилиндров) в бедные соотношения (см., например, публикацию не прошедшей экспертизу заявки на патент Японии №2004-218541). Этот контроллер устанавливает каждую из степени обогащения для обогащенных цилиндров и степени обеднения для обедненных цилиндров в различную степень на стадии инициирования управления повышением температуры и на более поздней стадии. Дополнительно, этот контроллер изменяет степень обогащения и степень обеднения, когда время проходит от начала управления повышением температуры, так что степень обогащения и степень обеднения становятся более низкими на стадии инициирования управления повышением температуры. Это делает возможным повышение температуры каталитического устройства, в то же время уменьшая вероятность пропуска зажигания в обедненных цилиндрах.
[0003] Существует известный другой контроллер, который последовательно выполняет управление задержкой момента зажигания, управление отсечкой подачи топлива и работой на обогащенной смеси, и управление работой на обедненной смеси и работой на обогащенной смеси (возмущающее управление) в качестве управления повышением температуры каталитического нейтрализатора для прогрева каталитического устройства, которое удаляет вредные компоненты выхлопных газов из двигателя внутреннего сгорания (см., например, публикацию не прошедшей экспертизу заявки на патент Японии №2011069281). Управление задержкой момента зажигания включает задержку момента зажигания, чтобы прогревать каталитическое устройство с помощью высокотемпературных выхлопных газов. Управление отсечкой подачи топлива и работой на обогащенной смеси включает выделение цилиндра, в который впрыск топлива прекращается с впускным клапаном и выпускным клапаном, которые продолжают работать, и цилиндра, в который топливо впрыскивается с тем, чтобы обогащать соотношение воздух-топливо, чередуя их друг с другом. Управление отсечкой подачи топлива и работой на обогащенной смеси выполняется приблизительно в течение трех секунд, когда температура на входе каталитического нейтрализатора достигает первой температуры в результате управления задержкой момента зажигания. Таким образом, кислород и несгоревший газ отправляются в каталитическое устройство, и каталитическое устройство прогревается с помощью тепла реакции окисления. Когда температура на входе каталитического нейтрализатора достигает второй температуры, более высокой по сравнению с первой температурой, управление работой на обедненной смеси и работой на обогащенной смеси выполняется до тех пор, пока температура на выходе каталитического нейтрализатора не достигнет второй температуры.
[0004] Среди известных контроллеров гибридного транспортного средства, включающего в себя двигатель внутреннего сгорания и электромотор, представляется контроллер, который прекращает подачу топлива в каждый цилиндр двигателя внутреннего сгорания, когда мощность, требуемая для двигателя внутреннего сгорания, становится меньше порогового значения, и управляет электромотором с тем, чтобы выводить крутящий момент на основе требуемого крутящего момента и корректирующего крутящего момента в момент, когда время начала корректировки прошло от начала отсечки подачи топлива. Этот контроллер оценивает, на основе скорости и числа цилиндров двигателя внутреннего сгорания, кратчайшее время и наиболее продолжительное время от начала отсечки подачи топлива до резкого повышения крутящего момента вследствие того, что отсечка подачи топлива начинает происходить, и устанавливает время между самым коротким временем и наиболее продолжительным временем в качестве времени начала корректировки. Корректирующий крутящий момент определяется так, чтобы сдвигать резкое повышение крутящего момента, действующее на приводной вал.
Сущность изобретения
[0005] Выполнение этих способов управления повышением температуры каталитического нейтрализатора не может всегда отправлять достаточно воздуха, т.е. кислорода, в каталитическое устройство и в достаточной степени повышать температуру каталитического устройства, если окружающая температура является низкой, или температура, которую требуется достигнуть посредством управления повышением температуры каталитического нейтрализатора, является высокой. Кроме того, нелегко вводить объем кислорода, требуемый для регенерации каталитического нейтрализатора или сажевого фильтра устройства для регулирования выхлопных газов, в устройство для регулирования выхлопных газов посредством этих способов управления повышением температуры каталитического нейтрализатора. При выполнении управления повышением температуры каталитического нейтрализатора во время работы под нагрузкой двигателя внутреннего сгорания необходимо избегать ухудшения дорожных качеств транспортного средства, оборудованного двигателем внутреннего сгорания.
[0006] Следовательно, это изобретение предоставляет гибридное транспортное средство и способ управления им, которые конфигурируются, чтобы, во время работы под нагрузкой многоцилиндрового двигателя, в достаточной степени и быстро повышать температуру каталитического нейтрализатора устройства для регулирования выхлопных газов и подавать достаточный объем кислорода в устройство для регулирования выхлопных газов, в то же время избегая ухудшения дорожных качеств транспортного средства.
[0007] Гибридное транспортное средство согласно первому аспекту этого изобретения включает в себя многоцилиндровый двигатель, устройство для регулирования выхлопных газов, электромотор, устройство хранения электричества и контроллер. Устройство для регулирования выхлопных газов выполняется с возможностью удалять вредные компоненты выхлопных газов из многоцилиндрового двигателя. Устройство хранения электричества выполняется с возможностью обмениваться электричеством с электромотором. В гибридном транспортном средстве, в котором, по меньшей мере, один из многоцилиндрового двигателя и электромотора выполняется с возможностью выводить приводную мощность к колесу, контроллер выполняется с возможностью выполнять управление повышением температуры каталитического нейтрализатора по запросу повышения температуры каталитического нейтрализатора во время работы под нагрузкой многоцилиндрового двигателя. Контроллер выполняется с возможностью управлять электромотором так, чтобы покрывать нехватку приводной мощности, получающуюся в результате выполнения управления повышением температуры каталитического нейтрализатора. Управление повышением температуры каталитического нейтрализатора является управлением, которое включает прекращение подачи топлива в, по меньшей мере, один из цилиндров многоцилиндрового двигателя и обогащение соотношений воздух-топливо для других цилиндров, отличных, по меньшей мере, от первого цилиндра.
[0008] В гибридном транспортном средстве согласно первому аспекту этого изобретения контроллер может быть сконфигурирован, чтобы управлять электромотором так, чтобы покрывать нехватку приводной мощности, в то время как подача топлива в, по меньшей мере, один цилиндр многоцилиндрового двигателя прекращается. В гибридном транспортном средстве согласно первому аспекту этого изобретения контроллер может быть сконфигурирован, чтобы задерживать момент зажигания для других цилиндров так, чтобы избегать увеличения выходной мощности многоцилиндрового двигателя, получающегося в результате обогащения соотношений воздух-топливо для других цилиндров.
[0009] Гибридное транспортное средство согласно первому аспекту этого изобретения может дополнительно включать в себя второй электромотор, выполненный с возможностью преобразовывать, по меньшей мере, часть мощности от многоцилиндрового двигателя в электричество и обмениваться электричеством с устройством хранения электричества. Контроллер может быть сконфигурирован, чтобы управлять вторым электромотором так, чтобы преобразовывать избыточную мощность многоцилиндрового двигателя, получающуюся в результате обогащения соотношений воздух-топливо для других цилиндров, в электричество. В гибридном транспортном средстве согласно первому аспекту этого изобретения контроллер может быть сконфигурирован, чтобы задерживать момент зажигания для других цилиндров, когда второй электромотор не имеет возможности преобразовывать избыточную мощность многоцилиндрового двигателя в электричество.
[0010] Гибридное транспортное средство согласно первому аспекту этого изобретения может дополнительно включать в себя ведущий мост в блоке с коробкой передач, который соединяется с выходным валом многоцилиндрового двигателя, вторым электромотором и колесом. Электромотор может быть сконфигурирован, чтобы выводить приводную мощность к колесу или другому колесу, отличному от колеса. В гибридном транспортном средстве согласно первому аспекту этого изобретения устройство для регулирования выхлопных газов может включать в себя сажевый фильтр.
[0011] В способе управления гибридным транспортным средством согласно второму аспекту этого изобретения гибридное транспортное средство включает в себя многоцилиндровый двигатель, устройство для регулирования выхлопных газов, включающее в себя каталитический нейтрализатор, выполненный с возможностью устранять вредные компоненты выхлопных газов из многоцилиндрового двигателя, электромотор и устройство хранения электричества, выполненное с возможностью обмениваться электричеством с электромотором. В гибридном транспортном средстве, по меньшей мере, один из многоцилиндрового двигателя и электромотора выполняется с возможностью выводить приводную мощность к колесу. Способ управления гибридным транспортным средством включает в себя: по запросу повышения температуры каталитического нейтрализатора во время работы под нагрузкой многоцилиндрового двигателя выполнение управления повышением температуры каталитического нейтрализатора, которое включает прекращение подачи топлива в, по меньшей мере, один из цилиндров и обогащение соотношений воздух-топливо для других цилиндров, отличных, по меньшей мере, от первого цилиндра; и управление электромотором так, чтобы покрывать нехватку приводной мощности, получающуюся в результате выполнения управления повышением температуры каталитического нейтрализатора.
Краткое описание чертежей
[0012] Признаки, преимущества и техническое и промышленное значение примерных вариантов осуществления изобретения будут описаны ниже со ссылкой на прилагаемые чертежи, на которых аналогичными ссылочными позициями обозначены аналогичные элементы, и на которых:
Фиг. 1 - схематичный чертеж конфигурации, показывающий гибридное транспортное средство этого изобретения;
Фиг. 2 - схематичный чертеж конфигурации, показывающий многоцилиндровый двигатель, включенный в гибридное транспортное средство на фиг. 1;
Фиг. 3 - блок-схема последовательности операций, иллюстрирующая программу определения того, нуждается или нет сажевый фильтр в регенерации, которая выполняется в гибридном транспортном средстве на фиг. 1;
Фиг. 4 - блок-схема последовательности операций, иллюстрирующая программу управления повышением температуры каталитического нейтрализатора, которая выполняется в гибридном транспортном средстве на фиг. 1;
Фиг. 5 - блок-схема последовательности операций, иллюстрирующая программу управления повышением температуры каталитического нейтрализатора, которая выполняется в гибридном транспортном средстве на фиг. 1;
Фиг. 6 - блок-схема последовательности операций, иллюстрирующая программу управления приведением в движение, которая выполняется в гибридном транспортном средстве на фиг. 1;
Фиг. 7 - график, показывающий соотношение между крутящим моментом, выводимым от многоцилиндрового двигателя, и моментом зажигания;
Фиг. 8 - временная диаграмма, показывающая рабочее состояние многоцилиндрового двигателя и изменения в температуре сажевого фильтра во время выполнения программ, показанных на фиг. 4-6;
Фиг. 9 - схематичный чертеж конфигурации, показывающий другое гибридное транспортное средство этого изобретения;
Фиг. 10 - схематичный чертеж конфигурации, показывающий еще одно гибридное транспортное средство этого изобретения;
Фиг. 11 - схематичный чертеж конфигурации, показывающий другое гибридное транспортное средство этого изобретения; и
Фиг. 12 - схематичный чертеж конфигурации, показывающий еще одно гибридное транспортное средство этого изобретения.
Подробное описание вариантов осуществления изобретения
[0013] Далее, режим выполнения изобретения из этого описания будет описан со ссылкой на чертежи.
[0014] Фиг. 1 представляет собой схематичный чертеж конфигурации, показывающий гибридное транспортное средство 1 согласно изобретению. Гибридное транспортное средство 1, показанное на фиг. 1, включает в себя: многоцилиндровый двигатель (далее в данном документе называемый просто "двигателем") 10, имеющий множество (в этом варианте осуществления, например, четыре) цилиндров (камер сгорания) 11; односателлитный планетарный зубчатый механизм 30; мотор-генераторы MG1, MG2, которые оба являются синхронными генераторами-моторами (трехфазными электромоторами переменного тока; устройство хранения электричества (аккумулятор) 40; блок управления мощностью (далее в данном документе называемый "PCU") 50, который соединяется с устройством 40 хранения электричества и приводит в действие мотор-генераторы MG1, MG2; электронно-управляемое гидравлическое тормозное устройство 60, которое применяет фрикционное тормозное усилие к колесу W; и гибридный электронный блок управления (далее в данном документе называемый "HVECU") 70, который управляет всем транспортным средством.
[0015] Двигатель 10 является рядным бензиновым двигателем (двигателем внутреннего сгорания), который преобразует возвратно-поступательное движение поршней (не показаны), сопровождающее сжигание смеси углеводородного топлива и воздуха в цилиндрах 11, во вращающее движение коленчатого вала (выходного вала) 12. Как показано на фиг. 2, двигатель 10 включает в себя впускную трубу 13, впускной коллектор 13m, дроссельную заслонку 14, множество впускных клапанов и множество выпускных клапанов (ни один не показан), множество клапанов 15p для впрыска во впускные каналы, множество клапанов 15d для впрыска в цилиндр, множество свечей 16 зажигания, выпускной коллектор 17m и выхлопную трубу 17. Дроссельная заслонка 14 является электронно-управляемой дроссельной заслонкой, которая может изменять проходное сечение внутри впускной трубы 13. Впускной коллектор 13m соединяется с впускной трубой 13 и впускным каналом каждого цилиндра 11. Каждый клапан 15p для впрыска в канал впрыскивает топливо в соответствующий впускной канал, а каждый клапан 15d для впрыска в цилиндр впрыскивает топливо непосредственно в соответствующий цилиндр 11. Выпускной коллектор 17m соединяется с выпускным каналом каждого цилиндра 11 и выхлопной трубой 17.
[0016] Двигатель 10 включает в себя подающую трубу DL низкого давления, которая соединяется с подающим насосом (насосом низкого давления) Pf через трубу LL подачи топлива низкого давления, и подающую трубу DH высокого давления, которая соединяется с подающим насосом (насосом высокого давления) Ps через трубу LH подачи топлива высокого давления. Подающая труба DL низкого давления соединяется с впускным отверстием для топлива каждого клапана 15p для впрыска во впускной канал, а подающая труба DH высокого давления соединяется с впускным отверстием для топлива каждого клапана 15d для впрыска в цилиндр. Подающий насос Pf является электрически приводимым насосом, включающим в себя мотор, который приводится в действие с помощью электричества от вспомогательного аккумулятора (не показан). Топливо от подающего насоса Pf накапливается в подающей трубе DL низкого давления и подается из подающей трубы DL низкого давления к каждому клапану 15p для впрыска во впускной канал. Подающий насос Ps является, например, поршневым насосом (механическим насосом), приводимым в действие посредством двигателя 10. Топливо высокого давления от подающего насоса Ps хранится внутри подающей трубы DH высокого давления и подается из подающей трубы DH высокого давления в каждый клапан 15d для впрыска в цилиндр.
[0017] Как показано на фиг. 2, двигатель 10 дополнительно включает в себя устройство 110 обработки испарившегося топлива, которое вводит, во впускной коллектор 13m, испарившееся топливо, которое формируется внутри топливного бака Tk, хранящего топливо. Устройство 110 обработки испарившегося топлива включает в себя бачок 111, содержащий адсорбент (активный уголь), который адсорбирует испарившееся топливо внутри топливного бака Tk, канал Lv подачи пара, соединяющий топливный бак Tk и бачок 111 друг с другом, канал Lp продувки, содержащий бачок 111 и впускной коллектор 13m друг с другом, и клапан Vsv продувки (клапан вакуумного переключателя), установленный в канале Lp продувки. В этом варианте осуществления клапан Vsv продувки является регулирующим клапаном, степень открытия которого является регулируемой.
[0018] Двигатель 10 дополнительно включает в себя, в качестве устройств для регулирования выхлопных газов, расположенное выше по потоку регулирующее устройство 18 и расположенное ниже по потоку регулирующее устройство 19, которые оба содержатся в выхлопной трубе 17. Расположенное выше по потоку регулирующее устройство 18 включает в себя NOx-накапливающий каталитический нейтрализатор для регулирования выхлопных газов (трехкомпонентный нейтрализатор) 180, который удаляет вредные компоненты, такие как CO (моноксид углерода), HC и NOx, выхлопных газов из каждого цилиндра 11 двигателя 10. Расположенное ниже по потоку регулирующее устройство 19 включает в себя сажевый фильтр (GPF) 190, который располагается ниже по потоку от расположенного выше по потоку регулирующего устройства 18 и собирает твердые частицы (мелкодисперсные частицы) в выхлопных газах. В этом варианте осуществления сажевый фильтр 190 является фильтром, который поддерживает NOx-накапливающий каталитический нейтрализатор для регулирования выхлопных газов (трехкомпонентный нейтрализатор).
[0019] Двигатель 10 управляется посредством электронного блока управления двигателем (далее в данном документе называется "ECU двигателя") 100. ECU 100 двигателя включает в себя микрокомпьютер, имеющий CPU, ROM, RAM, интерфейс ввода-вывода и т.д., различные возбуждающие схемы, и различные логические IC (никакая не показана) и выполняет регулировку объема всасываемого воздуха, управление впрыском топлива и управление моментом зажигания в отношении двигателя 10, управление продувкой для регулирования объема испарившегося топлива, продуваемого посредством устройства 110 обработки испарившегося топлива (клапана Vsv продувки) и т.д. ECU 100 двигателя получает, через входной порт (не показан), обнаруженные значения датчика 90 угла поворота коленчатого вала, датчика 91 температуры охлаждающей жидкости, расходомера 92 воздуха, датчика давления всасываемого воздуха (не показан), датчика положения дроссельной заслонки (не показан), расположенного выше по потоку датчика 95 соотношения воздух-топливо, расположенного ниже по потоку датчика 96 соотношения воздух-топливо, датчика 97 дифференциального давления, расположенного выше по потоку датчика 98 температуры каталитического нейтрализатора, расположенного ниже по потоку датчика 99 температуры каталитического нейтрализатора, и т.д.
[0020] Датчик 90 угла поворота коленчатого вала обнаруживает позицию при повороте коленчатого вала 12 (положение коленчатого вала). Датчик 91 температуры охлаждающей жидкости обнаруживает температуру Tw охлаждающей жидкости двигателя 10. Расходомер 92 воздуха обнаруживает объем GA всасываемого воздуха двигателя 10. Датчик давления всасываемого воздуха обнаруживает давление внутри впускной трубы 13, т.е. давление всасываемого воздуха. Датчик положения дроссельной заслонки обнаруживает положение тарелки клапана дроссельной заслонки 14 (положение дросселя). Расположенный выше по потоку датчик 95 соотношения воздух-топливо обнаруживает соотношение AFr воздух-топливо выше по потоку, которое является соотношением воздух-топливо выхлопных газов, протекающего в расположенное выше по потоку регулирующее устройство 18. Расположенный ниже по потоку датчик 96 соотношения воздух-топливо обнаруживает соотношение AFr воздух-топливо ниже по потоку, которое является соотношением воздух-топливо выхлопных газов, протекающих в расположенное ниже по потоку регулирующее устройство 19. Датчик 97 дифференциального давления обнаруживает дифференциальное давление ΔP между расположенной выше по потоку стороной и расположенной ниже по потоку стороной расположенного ниже по потоку регулирующего устройства 19, т.е. сажевого фильтра 190. Расположенный выше по потоку датчик 98 температуры каталитического нейтрализатора обнаруживает температуру (температуру каталитического нейтрализатора) Tct расположенного выше по потоку регулирующего устройства 18, т.е. каталитического нейтрализатора 180 для регулирования выхлопных газов. Расположенный ниже по потоку датчик 99 температуры каталитического нейтрализатора обнаруживает температуру (температуру каталитического нейтрализатора) Tpf расположенного ниже по потоку регулирующего устройства 19, т.е. сажевого фильтра 190.
[0021] ECU 100 двигателя вычисляет скорость Ne двигателя 10 (коленчатого вала 12) на основе положения коленчатого вала от датчика 90 угла поворота коленчатого вала. Дополнительно, ECU 100 двигателя вычисляет (рассчитывает) величину Dpm нароста твердых частиц на сажевом фильтре 190 расположенного ниже по потоку регулирующего устройства 19 с предварительно определенными временными интервалами либо способом истории приведения в движение, либо способом дифференциального давления согласно состоянию приведения в движение двигателя 10 и т.д. При использовании способа дифференциального давления ECU 100 двигателя вычисляет величину Dpm нароста на основе дифференциального давления ΔP, обнаруженного посредством датчика 97 дифференциального давления, т.е. потери давления на сажевом фильтре 190 вследствие нарастания твердых частиц. При использовании способа истории приведения в движение ECU 100 двигателя вычисляет величину Dpm нароста (текущее значение) посредством сложения расчетной величины увеличения (положительное значение) или расчетной величины уменьшения (отрицательное значение) твердых частиц с последним значением величины Dpm нароста согласно состоянию приведения в движение двигателя 10. Расчетная величина увеличения твердых частиц вычисляется, например, как произведение расчетного количества выпущенных твердых частиц, которое вычисляется из скорости Ne, коэффициента нагрузки и температуры Tw охлаждающей жидкости двигателя 10; коэффициента выброса; и эффективности сбора сажевого фильтра 190. Расчетная величина уменьшения твердых частиц вычисляется, например, как произведение количества сгоревших твердых частиц, которое вычисляется из последнего значения величины Dpm нароста, расхода всасываемого воздуха и температуры Tpf сажевого фильтра 190; и поправочного коэффициента.
[0022] Двигатель 10 может быть дизельным двигателем, имеющим дизельный сажевый фильтр (DPF), или LPG-двигателем. Температуры Tct, Tpf каталитического нейтрализатора 180 для регулирования выхлопных газов и сажевый фильтр 190 могут быть рассчитаны на основе объема GA всасываемого воздуха, скорости Ne, температуры выхлопных газов, соотношения AFf воздух-топливо выше по потоку, соотношения AFr воздух-топливо ниже по потоку и т.д.
[0023] Планетарный зубчатый механизм 30 является дифференциальным вращающимся механизмом, включающим в себя солнечное зубчатое колесо (первый элемент) 31, коронное зубчатое колесо (второй элемент) 32 и водило планетарной передачи (третий элемент) 34, которая поддерживает с возможностью вращения множество сателлитов 33. Как показано на фиг. 1, солнечное зубчатое колесо 31 соединяется с ротором мотор-генератора MG1, а водило 34 планетарной передачи соединяется с коленчатым валом 12 двигателя 10 через демпферный механизм 24. Коронное зубчатое колесо 32 объединяется с ведущим промежуточным зубчатым колесом 35, действующим в качестве выходного элемента, и эти зубчатые колеса вращаются соосно и как одно целое.
[0024] Ведущее промежуточное зубчатое колесо 35 соединяется с левым и правым колесами (ведущими колесами) W через ведомое промежуточное зубчатое колесо 36, зацепляющееся с ведущим промежуточным зубчатым колесом 35, конечное ведущее зубчатое колесо (ведущий сателлит) 37, вращающийся как одно целое с ведомым промежуточным зубчатым колесом 36, конечное ведомое зубчатое колесо (коронное зубчатое колесо дифференциала) 39r, сцепляющееся с конечным ведущим зубчатым колесом 37, зубчатое колесо 39 дифференциала и приводной вал DS. Таким образом, планетарный зубчатый механизм 30, зубчатая передача от ведущего промежуточного зубчатого колеса 35 до конечного ведомого зубчатого колеса 39r и дифференциальное зубчатое колесо 39 составляют узел 20 моста с коробкой передач, который передает часть выходного крутящего момента двигателя 10, действующего в качестве источника формирования движущей мощности, к колесам W и соединяет вместе двигатель 10 и мотор-генератор MG1.
[0025] Ведущее зубчатое колесо 38 прикрепляется к ротору мотор-генератора MG2. Ведущее зубчатое колесо 38 имеет меньше зубьев по сравнению с ведомым промежуточным зубчатым колесом 36 и сцепляется с ведомым промежуточным зубчатым колесом 36. Таким образом, мотор-генератор MG2 соединяется с левым и правым колесами W через ведущее зубчатое колесо 38, ведомое промежуточное зубчатое колесо 36, конечное ведущее зубчатое колесо 37, конечное ведомое зубчатое колесо 39r, дифференциальное зубчатое колесо 39 и приводной вал DS.
[0026] Мотор-генератор MG1 (второй электромотор) работает, главным образом, как генератор мощности, который преобразует, по меньшей мере, часть мощности от двигателя 10 при работе под нагрузкой в электричество. Мотор-генератор MG2 работает, главным образом, как электромотор, который приводится в действие, по меньшей мере, с помощью одного из электричества от устройства 40 хранения электричества и электричества от мотор-генератора MG1 и формирует крутящий момент приведения в движение для приводного вала DS. Таким образом, в гибридном транспортном средстве 1, мотор-генератор MG2 в качестве источника формирования движущей мощности функционирует как устройство формирования движущей мощности, которое, вместе с двигателем 10, выводит крутящий момент приведения в движение (движущую мощность) к колесам W, установленным на приводном валу DS. Дополнительно, мотор-генератор MG2 выводит крутящий момент рекуперативного торможения, чтобы тормозить гибридное транспортное средство 1. Мотор-генераторы MG1, MG2 могут обмениваться электричеством с устройством 40 хранения электричества через PCU 50, а также обмениваться электричеством друг с другом через PCU 50.
[0027] Устройство 40 хранения электричества является, например, литиево-ионной аккумуляторной батареей или никель-металгидридной аккумуляторной батареей. Устройство 40 хранения электричества управляется посредством электронного блока управления для управления источником мощности (далее в данном документе называемого "ECU управления источником мощности") 45, включающего в себя микрокомпьютер, имеющий CPU, ROM, RAM, интерфейс ввода-вывода и т.д. (ни один не показан). ECU 45 управления источником мощности получает состояние заряда (SOC), допустимое электричество Win заряда, допустимое электричество Wout разряда и т.д. устройства 40 хранения электричества на основе напряжения VB между клеммами от датчика направления устройства 40 хранения электричества, тока IB заряда-разряда от его датчика тока, температуры Tb аккумулятора от его датчика 47 температуры (см. фиг. 1) и т.д.
[0028] PCU 50 включает в себя первый инвертор 51, который приводит в действие мотор-генератор MG1, второй инвертор 52, который приводит в действие мотор-генератор MG2, и повышающий преобразователь (модуль преобразования напряжения) 53, который может пошагово повышать напряжение электричества из устройства 40 хранения электричества и пошагово понижать напряжение электричества от мотор-генераторов MG1, MG2. PCU 50 управляется посредством электронного блока управления мотором (далее в данном документе называемого "MGECU") 55, включающего в себя микрокомпьютер, имеющий CPU, ROM, RAM, интерфейс ввода-вывода и т.д., различные возбуждающие схемы и различные логические ИС (ни одна не показана). MGECU 55 получает командный сигнал от HVECU 70, напряжения перед и после пошагового повышения посредством повышающего преобразователя 53, обнаруженные значения резольверов (не показаны), которые обнаруживают положения при вращении роторов мотор-генераторов MG1, MG2, фазные токи, прикладываемые к мотор-генераторам MG1, MG2, и т.д. На основе этих сигналов и т.д. MGECU 55 управляет переключением первого и второго инверторов 51, 52 и повышающего преобразователя 53. На основе обнаруженных значений резольверов MGECU 55 вычисляет скорости Nm1, Nm2 вращения роторов мотор-генераторов MG1, MG2.
[0029] Гидравлическое тормозное устройство 60 включает в себя: главный цилиндр; множество тормозных колодок (не показаны), которые удерживают между собой тормозной диск, установленный на каждом колесе W, и прикладывают тормозной момент (фрикционный тормозной момент) к соответствующему колесу; множество колесных цилиндров (не показаны), которые приводят в действие соответствующую тормозную колодку; гидравлический тормозной актуатор 61, который подает гидравлическое давление к каждому колесному цилиндру; и электронный блок управления тормозом (далее в данном документе называемый "ECU тормоза") 65, который управляет тормозным актуатором 61. ECU 65 тормоза включает в себя микрокомпьютер, имеющий CPU, ROM, RAM, интерфейс ввода-вывода и т.д. (ни одно не показано). ECU 65 тормоза получает командный сигнал от HVECU 70, ход BS педали тормоза (величину нажатия на педаль 64 тормоза), обнаруженный посредством датчика 63 хода педали тормоза, скорость V транспортного средства, обнаруженную посредством датчика скорости транспортного средства (не показан), и т.д. ECU 65 тормоза управляет тормозным актуатором 61 на основе этих сигналов и т.д.
[0030] HVECU 70 включает в себя микрокомпьютер, имеющий CPU, ROM, RAM, интерфейс ввода-вывода и т.д., различные возбуждающие схемы и различные логические ИС (ни одно не показано). HVECU 70 обменивается информацией (кадрами передачи данных) с множеством ECU 100, 45, 55, 65 и т.д. через обычную линию связи (многоканальную шину связи; не показана), которая является CAN-шиной, включающей в себя две Lo и Hi-линии связи (жгутов проводов). HVECU 70 отдельно соединяется с каждым из ECU 100, 45, 55, 65 через выделенную линию связи (локальную шину связи), которая является CAN-шиной, включающей в себя Lo и Hi две линии связи (жгутов проводов). HVECU 70 обменивается информацией (кадрами передачи данных) отдельно с каждым из ECU 100, 45, 55, 65 через соответствующую выделенную линию связи. Дополнительно, HVECU 70 получает сигналы от переключателя запуска (не показан), который инструктирует системе запускать гибридное транспортное средство 1, положение SP рычага переключения передач от рычага 82 переключения передач, обнаруженное посредством датчика 81 положения рычага переключения передач, величину Acc срабатывания акселератора (величину нажатия на педаль 84 акселератора), обнаруженную посредством датчика 83 положения педали акселератора, скорость V транспортного средства, обнаруженную посредством датчика скорости транспортного средства (не показан), положение коленчатого вала, обнаруженное посредством датчика 90 угла поворота коленчатого вала двигателя 10, и т.д. Дополнительно, HVECU 70 получает состояние заряда (SOC), допустимое электричество Win заряда и допустимое электричество Wout разряда устройства 40 хранения электричества от ECU 45 управления источником мощности, скорости Nm1, Nm2 вращения мотор-генераторов MG1, MG2 от MGECU 55, и т.д.
[0031] Когда гибридное транспортное средство 1 движется, HVECU 70 получает, из карты настроек требуемого крутящего момента (не показана), требуемый крутящий момент Tr* (включающий в себя требуемый тормозной момент), который должен выводиться на приводной вал DS согласно величине Acc срабатывания акселератора и скорости V транспортного средства. На основе требуемого крутящего момента Tr* и скорости Nds вращения приводного вала DS HVECU 70 задает требуемую мощность движения Pd* (=Tr* × Nds), требуемую для движения гибридного транспортного средства 1. На основе требуемого крутящего момента Tr*, требуемой мощности Pd* движения, отдельно заданного целевого электричества Pd* заряда-разряда и допустимого электричества Wout разряда устройства 40 хранения электричества и т.д. HVECU 70 определяет, выполнять или нет работу под нагрузкой для двигателя 10.
[0032] При выполнении работы под нагрузкой для двигателя 10 HVECU 70 задает требуемую мощность Pe* (= Pd* - Pb* + потеря) для двигателя 10 на основе требуемой мощности Pd* движения, целевого электричества Pb* заряда-разряда и т.д. Дополнительно, HVECU 70 задает целевую скорость Ne* двигателя 10 согласно требуемой мощности Pe*, так что двигатель 10 эффективно работает и не падает ниже нижней предельной скорости Nelim согласно состоянию приведения в движение гибридного транспортного средства 1 и т.д. Затем, HVECU 70 задает, в диапазонах допустимого электричества Win заряда и допустимого электричества Wout разряда устройства 40 хранения электричества, команды Tm1*, Tm2* крутящего момента для мотор-генераторов MG1, MG2 согласно требуемому крутящему моменту Tr*, целевой скорости Ne* и т.д. С другой стороны, при прекращении работы двигателя 10, HVECU 70 задает требуемую мощность Pe*, целевую скорость Ne* и команду Tm1* крутящего момента в ноль. Дополнительно, HVECU 70 задает команду Tm2* крутящего момента в диапазонах допустимого электричества Win заряда и допустимого электричества Wout разряда устройства 40 хранения электричества, так что крутящий момент согласно требуемому крутящему моменту Tr* выводится от мотор-генератора MG2 к приводному валу DS.
[0033] Затем, HVECU 70 отправляет требуемую мощность Pe* и целевую скорость Ne* в ECU 100 двигателя и отправляет команды Tm1*, Tm2* крутящего момента в MGECU 55. На основе требуемой мощности Pe* и целевой скорости Ne* ECU 100 двигателя выполняет регулировку объема всасываемого воздуха, регулировку впрыска топлива, регулировку момента зажигания и т.д. В этом варианте осуществления ECU 100 двигателя, в основном, выполняет регулировку впрыска топлива, так что соотношение воздух-топливо для каждого цилиндра 11 двигателя 10 становится стехиометрическим соотношением воздух-топливо (= 14,6-14,7). Когда нагрузка (требуемая мощность Pe*) на двигатель 10 равна или меньше предварительно определенного значения, топливо впрыскивается из каждого клапана 15p для впрыска во впускной канал, а впрыск топлива из каждого клапана 15d для впрыска в цилиндр прекращается. Когда нагрузка на двигатель 10 превышает предварительно определенное значение, впрыск топлива из каждого клапана 15p для впрыска во впускной канал прекращается, и топливо впрыскивается из каждого клапана 15d для впрыска в цилиндр. В этом варианте осуществления впрыск топлива и зажигание для цилиндров 11 выполняется в следующем порядке (зажигания): первый цилиндр #1, третий цилиндр #3, четвертый цилиндр #4 и второй цилиндр #2.
[0034] MGECU 55 управляет переключением первого и второго инверторов 51, 52 и повышающим преобразователем 53 на основе команд Tm1*, Tm2* крутящего момента. Когда двигатель 10 выполняет работу под нагрузкой, мотор-генераторы MG1, MG2 управляются так, чтобы преобразовывать, вместе с планетарным зубчатым механизмом 30, часть мощности, выводимой от двигателя 10 (когда устройство 40 хранения электричества заряжается), или всю мощность (когда устройство 40 хранения электричества разряжается) в крутящий момент и выводить этот крутящий момент на приводной вал DS. Таким образом, гибридное транспортное средство 1 движется от мощности от двигателя 10 (непосредственно передаваемого крутящего момента) и мощности от мотор-генератора MG2 (HV-движение). С другой стороны, когда двигатель 10 прекращает работу, гибридное транспортное средство 1 движется только от мощности (крутящего момента приведения в движение) от мотор-генератора MG2 (EV-движение).
[0035] Здесь, как описано выше, гибридное транспортное средство 1 этого варианта осуществления включает в себя расположенное ниже по потоку регулирующее устройство 19, имеющее сажевый фильтр 190 в качестве устройства для регулирования выхлопных газов. Величина Dpm нароста твердых частиц на сажевом фильтре 190 увеличивается, когда расстояние, пройденное гибридным транспортным средством 1, увеличивается, и когда окружающая температура становится более низкой. Следовательно, на стадии, когда величина Dpm нароста твердых частиц на сажевом фильтре 190 увеличилась, гибридное транспортное средство 1 нуждается в сжигании твердых частиц и регенерации сажевого фильтра 190 посредством отправки большого объема воздуха, т.е. кислорода, к сажевому фильтру 190, температура которого достаточно повысилась. Для этого, ECU 100 двигателя гибридного транспортного средства 1 выполняет программу для определения того, нуждается или нет сажевый фильтр в регенерации, иллюстрированную на фиг. 3, с предварительно определенными временными интервалами, когда работа под нагрузкой двигателя 10 выполняется согласно нажатию водителем гибридного транспортного средства 1 на педаль 84 акселератора.
[0036] В начале программы на фиг. 3 ECU 100 двигателя получает информацию, требуемую для определения, такую как объем GA всасываемого воздуха, скорость Ne и температура Tw охлаждающей жидкости двигателя 10 и температура Tpf сажевого фильтра 190 (этап S100). На основе физических величин и т.д., полученных на этапе S100, ECU 100 двигателя вычисляет величину Dpm нароста твердых частиц на сажевом фильтре 190, либо способом истории движения, либо способом дифференциального давления согласно рабочему состоянию двигателя 10 и т.д. (этап S110). Затем, ECU 100 двигателя определяет, должна ли все еще или нет выполняться программа управления повышением температуры каталитического нейтрализатора для повышения температур каталитического нейтрализатора 180 для регулирования выхлопных газов расположенного выше по потоку регулирующего устройства 18 и сажевого фильтра 190 расположенного ниже по потоку регулирующего устройства 19 (этап S120).
[0037] Когда определяется на этапе S120, что программа управления повышением температуры каталитического нейтрализатора все еще должна выполняться (этап S120: Да), ECU 100 двигателя определяет, действительно или нет величина Dpm нароста, вычисленная на этапе S110, равна или больше предварительно определенного порогового значения D1 (например, значения около 5000 мг) (этап S130). Когда определяется на этапе S130, что величина Dpm нароста меньше порогового значения D1 (этап S130: Нет), ECU 100 двигателя заканчивает программу на фиг. 3 пока что в этой точке. Когда определяется на этапе S130, что величина Dpm нароста равна или больше порогового значения D1 (этап S130: Да), ECU 100 двигателя определяет, действительно или нет температура Tpf сажевого фильтра 190, полученная на этапе S100, ниже предварительно определенной температуры начала управления повышением температуры (предварительно определенной температуры) Tx (этап S140). Температура Tx начала управления повышением температуры определяется заранее согласно условиям эксплуатации гибридного транспортного средства 1 и, например, является температурой около 600°C в этом варианте осуществления.
[0038] Когда определяется на этапе S140, что температура Tpf сажевого фильтра 190 равна или выше температуры Tx начала управления повышением температуры (этап S140: Нет), ECU 100 двигателя заканчивает программу на фиг. 3 пока что в этой точке. Когда определяется на этапе S140, что температура Tpf сажевого фильтра 190 ниже температуры Tx начала управления повышением температуры (этап S140: Да), ECU 100 двигателя отправляет сигнал запроса повышения температуры каталитического нейтрализатора для запроса выполнения программы управления повышением температуры каталитического нейтрализатора в HVECU 70 (этап S150) и заканчивает программу на фиг. 3 пока что. Когда выполнение программы управления повышением температуры каталитического нейтрализатора разрешается посредством HVECU 70, после того как сигнал запроса повышения температуры каталитического нейтрализатора отправляется, ECU 100 двигателя включает флаг повышения температуры каталитического нейтрализатора и начинает программу управления повышением температуры каталитического нейтрализатора.
[0039] С другой стороны, когда определяется на этапе S120, что программа управления повышением температуры каталитического нейтрализатора уже выполняется (этап S120: Нет), ECU 100 двигателя определяет, действительно или нет величина Dpm нароста, вычисленная на этапе S110, равна или меньше предварительно определенного порогового значения D0 (например, значения около 3000 мг), которое меньше порогового значения D1 (этап S160). Когда определяется на этапе S160, что величина Dpm нароста превышает пороговое значение D0 (этап S160: Нет), ECU 100 двигателя заканчивает программу на фиг. 3 пока что в этой точке. Когда определяется на этапе S160, что величина Dpm нароста равна или меньше порогового значения D0 (этап S160: Да), ECU 100 двигателя выключает флаг повышения температуры каталитического нейтрализатора, заканчивает программу управления повышением температуры каталитического нейтрализатора (этап S170) и заканчивает программу на фиг. 3.
[0040] Далее, программа управления повышением температуры каталитического нейтрализатора для повышения температур каталитического нейтрализатора 180 для регулирования выхлопных газов и сажевого фильтра 190 будут описана. Фиг. 4 представляет собой блок-схему последовательности операций, иллюстрирующую программу управления повышением температуры каталитического нейтрализатора, которая выполняется посредством ECU 100 двигателя с предварительно определенными временными интервалами. Программа на фиг. 4 выполняется, в то время как работа под нагрузкой двигателя 10 выполняется согласно водительскому нажатию на педаль 84 акселератора, при условии, что выполнение этой программы разрешается посредством HVECU 70, пока флаг повышения температуры каталитического нейтрализатора не будет выключен на этапе S170 на фиг. 3.
[0041] В начале программы на фиг. 4 ECU 100 двигателя получает информацию, требуемую для управления, такую как объем GA всасываемого воздуха, скорость Ne и температура Tw охлаждающей жидкости двигателя 10, температура Tpf сажевого фильтра 190, положения коленчатого вала от датчика 90 угла поворота коленчатого вала и требуемая мощность Pe* и целевая скорость Ne* от HVECU 70 (этап S200). После процесса этапа S200 ECU 100 двигателя определяет, равно или нет значение флага Fr обогащения нулю (этап S210). Прежде чем программа на фиг. 4 начинается, значение флага Fr обогащения устанавливается в ноль, и когда определяется на этапе S210, что значение флага Fr обогащения равно нулю (этап S210: Нет), ECU 100 двигателя устанавливает значение флага Fr обогащения в единицу (этап S220).
[0042] Затем, ECU 100 двигателя устанавливает величины управления впрыском топлива, такие как объем топлива, впрыскиваемого из каждого клапана 15p впрыска во впускной канал или каждого клапана 15d впрыска в цилиндр, и момент окончания впрыска топлива (этап S230). На этапе S230 ECU 100 двигателя устанавливает в ноль объем топлива, впрыскиваемого в один предварительно определенный цилиндр 11 (например, первый цилиндр #1) среди цилиндров 11 двигателя 10. На этапе S230 ECU 100 двигателя увеличивает объемы топлива, впрыскиваемого в другие цилиндры 11 (например, второй цилиндр #2, третий цилиндр #3 и четвертый цилиндр #4) по сравнению с первым цилиндром 11 каждый, например, на 20-25% (в этом варианте осуществления, 20%) по сравнению с объемом топлива, который должен первоначально впрыскиваться в первый цилиндр 11 (первый цилиндр #1).
[0043] После установки величин управления впрыском топлива на этапе S230 ECU 100 двигателя идентифицирует цилиндр 11, для которого момент начала впрыска топлива настал, на основе положения коленчатого вала от датчика 90 угла поворота коленчатого вала (этап S240). Когда определяется, в результате процесса идентификации этапа S240, что момент начала впрыска топлива для одного цилиндра 11 (первого цилиндра #1) настал (этап S250: Нет), ECU 100 двигателя не впрыскивает топливо из клапана 15p для впрыска во впускной канал или клапан 15d для впрыска в цилиндр, соответствующий этому одному цилиндру 11, и определяет, был или нет завершен один цикл впрыска топлива, чтобы проворачивать двигатель 10 дважды (этап S270). Когда подача топлива в один цилиндр (первый цилиндр #1) прекращается (во время отсечки подачи топлива), впускной клапан и выпускной клапан этого цилиндра 11 открываются и закрываются тем же образом, что и когда топливо подается в него. Когда определяется, в результате процесса идентификации этапа S240, что момент начала впрыска топлива для одного из других цилиндров 11 (второго цилиндра #2, третьего цилиндра #3 или четвертого цилиндра #4) настал (этап S250: Да), ECU 100 двигателя впрыскивает топливо в этот цилиндр 11 из соответствующего клапана 15p для впрыска во впускной канал или клапана 15d для впрыска в цилиндр (этап S260) и определяет, был или нет завершен один цикл впрыска топлива (этап S270).
[0044] Когда определяется на этапе S270, что один цикл впрыска топлива еще не был завершен (этап S270: Нет), ECU 100 двигателя циклически выполняет процессы этапов S240-S260. Пока эта программа выполняется, степень открытия дроссельной заслонки 14 устанавливается на основе требуемой мощности Pe* и целевой скорости Ne* (требуемого крутящего момента). Следовательно, в результате процессов этапов S240-S270, подача топлива в один цилиндр 11 (первый цилиндр #1) прекращается, и соотношения воздух-топливо для других цилиндров 11 (второй цилиндр #2, третий цилиндр #3 и четвертый цилиндр #4) обогащаются. Далее в данном документе цилиндр 11, в который подача топлива прекращается, будет называться "цилиндром с отсечкой подачи топлива" по необходимости, а цилиндр 11, в который топливо подается, будет называться "цилиндром сжигания" по необходимости. Когда определяется на этапе S270, что один цикл впрыска топлива был завершен (этап S270: Да), ECU 100 двигателя повторно выполняет процессы этапа S200 и последующих этапов.
[0045] После установки значения флага Fr обогащения в единицу на этапе S220 ECU 100 двигателя определяет на этапе S210, что значение флага Fr обогащения равно единице (этап S210: Да). В этом случае, ECU 100 двигателя определяет, действительно или нет температура Tpf сажевого фильтра 190, полученная на этапе S200, ниже предварительно определенной температуры разрешения регенерации (порогового значения первого определения) Ty (этап S215). Температура Ty разрешения регенерации является температурой, равной или слегка выше нижнего предельного значения температуры, при которой сажевый фильтр 190 может быть регенерирован, т.е. твердые частицы могут быть сожжены. Температура Ty разрешения регенерации определяется заранее согласно условиям эксплуатации гибридного транспортного средства 1 и является, например, температурой около 650°C в этом варианте осуществления. Когда определяется на этапе S215, что температура Tpf сажевого фильтра 190 ниже температуры Ty разрешения регенерации (этап S215: Да), ECU 100 двигателя выполняет процессы этапов S230-S270 и затем повторно выполняет процессы этапа S200 и последующих этапов.
[0046] Когда определяется на этапе S215, что температура Tpf сажевого фильтра 190 равна или выше температуры Ty разрешения регенерации (этап S215: Нет), как показано на фиг. 5, ECU 100 двигателя определяет, равно ли нулю значение флага Ft высокой температуры (этап S280). Прежде чем программа на фиг. 4 начинается, значение флага Ft высокой температуры устанавливается в ноль, и когда определяется на этапе S280, что значение флага Ft высокой температуры равно нулю (этап S280: Да), ECU 100 двигателя устанавливает значение флага Fr обогащения в ноль (этап S290). После установки значения флага Fr обогащения в ноль ECU 100 двигателя определяет, действительно или нет температура Tpf сажевого фильтра 190, полученная на этапе S200, равна или выше предварительно определенной температуре способствования регенерации (пороговое значение второго определения) Tz (этап S300). Температура Tz способствования регенерации является температурой, при которой регенерация сажевого фильтра 190, т.е. сжигание твердых частиц, может быть произведена. Температура Tz способствования регенерации определяется заранее согласно условиям эксплуатации гибридного транспортного средства 1 и является, например, температурой около 700°C в этом варианте осуществления.
[0047] Когда определяется на этапе S300, что температура Tpf сажевого фильтра 190 ниже температуры Tz способствования регенерации (этап S300: Нет), ECU 100 двигателя устанавливает величины управления впрыском топлива, такие как объем топлива, впрыскиваемого из каждого клапана 15p для впрыска во впускной канал или каждого клапана 15d для впрыска в цилиндр, и момент окончания впрыска топлива (этап S310). На этапе S310 ECU 100 двигателя устанавливает объем топлива, впрыскиваемого в цилиндр с отсечкой подачи топлива (первый цилиндр #1) среди цилиндров 11, в ноль. На этапе S310 ECU 100 двигателя увеличивает объемы топлива, впрыскиваемого во все другие цилиндры (второй цилиндр #2, третий цилиндр #3 и четвертый цилиндр #4), отличные от цилиндра с отсечкой подачи топлива (первого цилиндра #1), каждый, например, на 3-7% (в этом варианте осуществления, 5%) по сравнению с объемом топлива, который должен быть первоначально впрыснут в цилиндр с отсечкой подачи топлива.
[0048] После настройки величин управления впрыском топлива на этапе S310 ECU 100 двигателя циклически выполняет процессы этапов S240-S260, пока не будет определено на этапе S270, что один цикл впрыска топлива был завершен. Таким образом, подача топлива в один цилиндр (цилиндр с отсечкой подачи топлива) 11 (первый цилиндр #1) прекращается, и соотношения воздух-топливо для других цилиндров (цилиндров сжигания) 11 (второй цилиндр #2, третий цилиндр #3 и четвертый цилиндр #4) изменяются в обедненную сторону до слегка обогащенных соотношений по сравнению с соотношениями, когда выполняется процесс этапа S230.
[0049] Когда определяется на этапе S300, что температура Tpf сажевого фильтра 190 равна или выше температуры Tz способствования регенерации (этап S300: Да), ECU 100 двигателя устанавливает значение флага Ft высокой температуры в единицу (этап S305). Дополнительно, на этапе S305, ECU 100 двигателя отправляет сигнал запроса добавления цилиндра с отсечкой подачи топлива для запроса добавления цилиндра с отсечкой подачи топлива в HVECU 70. Затем, ECU 100 двигателя устанавливает величины управления впрыском топлива для каждого клапана 15p для впрыска во впускной канал или каждого клапана 15d для впрыска в цилиндр (этап S310) и циклически выполняет процессы этапов S240-S260, пока не будет определено на этапе S270, что один цикл впрыска топлива был завершен.
[0050] В этом варианте осуществления ECU 100 двигателя отправляет сигнал запроса добавления цилиндра с отсечкой подачи топлива в HVECU 70 однократно в каждых двух циклах (четыре оборота двигателя 10) после установки значения флага Ft высокой температуры в единицу на этапе S305. То, разрешать или нет добавление цилиндра с отсечкой подачи топлива, определяется посредством HVECU 70. Когда HVECU 70 разрешает добавление цилиндра с отсечкой подачи топлива, ECU 100 двигателя выбирает (добавляет), в качестве нового цилиндра с отсечкой подачи топлива, цилиндр 11 (в этом варианте осуществления, четвертый цилиндр #4), для которого выполнение впрыска топлива (зажигания) не является непрерывным с выполнением впрыска для первого цилиндра #1, когда программа управления повышением температуры каталитического нейтрализатора не выполняется.
[0051] Дополнительно, когда HVECU 70 разрешает добавление цилиндра с отсечкой подачи топлива, на этапе S310, ECU 100 двигателя устанавливает объемы топлива, впрыскиваемого в цилиндры с отсечкой подачи топлива (первый цилиндр #1 и четвертый цилиндр #4) среди цилиндров 11, в ноль. На этапе S310 ECU 100 двигателя увеличивает объемы топлива, впрыскиваемого во все другие цилиндры сжигания (второй цилиндр #2 и третий цилиндр #3), отличные от цилиндров с отсечкой подачи топлива, каждый, например, на 3-7% (в этом варианте осуществления, 5%) по сравнению с объемом топлива, который должен первоначально впрыскиваться в одни цилиндр с отсечкой подачи топлива. Также в этом случае, после процесса этапа S310 ECU 100 выполняет процессы этапов S240-S270 и затем повторно выполняет процессы этапа S200 и последующих этапов. Таким образом, подача топлива в два цилиндра 11 (первый цилиндр #1 и четвертый цилиндр #4) прекращается, и соотношения воздух-топливо для других цилиндров 11 (второго цилиндра #2 и третьего цилиндра #3) изменяются в обедненную сторону, чтобы слегка обогащать соотношения по сравнению с соотношениями, когда выполняется процесс этапа S230.
[0052] После установки значения флага Ft высокой температуры в единицу на этапе S305 ECU 100 двигателя определяет на этапе S280, что значение флага Ft высокой температуры равно единице (этап S280: Нет). В этом случае, ECU 100 двигателя определяет, действительно или нет температура Tpf сажевого фильтра 190, полученная на этапе S200, ниже температуры Tx начала управления повышением температуры (этап S320). Когда определяется на этапе S320, что температура Tpf сажевого фильтра 190 равна или выше температуры Tx начала управления повышением температуры (этап S320: Нет), ECU 100 двигателя выполняет процессы этапов S310 и S240-S270 и затем повторно выполняет процессы этапа S200 и последующих этапов. С другой стороны, когда определяется на этапе S320, что температура Tpf сажевого фильтра 190 ниже температуры Tx начала управления повышением температуры (этап S320: Да), ECU 100 двигателя устанавливает значение флага Ft высокой температуры в ноль (этап S325). Дополнительно, на этапе S325, ECU 100 двигателя отправляет сигнал сокращения цилиндра с отсечкой подачи топлива в HVECU 70, чтобы уведомлять HVECU 70 о возобновлении подачи топлива в этот цилиндр с отсечкой подачи топлива (четвертый цилиндр #4), который был добавлен ранее.
[0053] После процесса этапа S325 ECU 100 двигателя устанавливает значение флага Fr обогащения в единицу снова на этапе S220 на фиг. 4. Дополнительно, ECU 100 двигателя устанавливает в ноль объем топлива, впрыскиваемого в цилиндр с отсечкой подачи топлива (первый цилиндр #1), прекращение подачи топлива для которого продолжается, и увеличивает объемы топлива, впрыскиваемого в другие цилиндры (цилиндры сжигания) 11 (второй цилиндр #2, третий цилиндр #3 и четвертый цилиндр #4), каждый на 20% по сравнению с объемом топлива, который должен быть первоначально впрыснут в один цилиндр с отсечкой подачи топлива (первый цилиндр #1) (этап S230). Таким образом, в результате процессов этапов S240-S270, подача топлива в один цилиндр (цилиндр с отсечкой подачи топлива) 11 (первый цилиндр #1) прекращается, и соотношения воздух-топливо для других цилиндров (цилиндров сжигания) 11 (второй цилиндр #2, третий цилиндр #3 и четвертый цилиндр #4) обогащаются вновь.
[0054] Фиг. 6 представляет собой блок-схему последовательности операций, иллюстрирующую программу управления приведением в движение, которая выполняется посредством HVECU 70, после того как сигнал запроса повышения температуры каталитического нейтрализатора отправляется посредством ECU 100 двигателя на этапе S150 на фиг. 3, циклически с предварительно определенными временными интервалами и одновременно с программой управления повышением температуры каталитического нейтрализатора.
[0055] В начале программы на фиг. 6 HVECU 70 получает информацию, требуемую для управления, такую как величина Acc срабатывания акселератора; скорость V транспортного средства; положение коленчатого вала от датчика 90 угла поворота коленчатого вала; скорости Nm1, Nm2 вращения мотор-генераторов MG1, MG2; SOC, целевое электричество Pb* заряда-разряда, допустимое электричество Win заряда и допустимое электричество Wout разряда устройства 40 хранения электричества; то, был или нет сигнал запроса добавления цилиндра с отсечкой подачи топлива и сигнал сокращения цилиндра с отсечкой подачи топлива принят от ECU 100 двигателя; и значение флага Fr обогащения от ECU 100 двигателя (этап S400). Затем, HVECU 70 устанавливает требуемый крутящий момент Tr* на основе величины Acc срабатывания акселератора и скорости V транспортного средства и устанавливает требуемую мощность Pe* двигателя 10 на основе требуемого крутящего момента Tr* (требуемой мощности Pd* движения), целевого электричества Pb* заряда-разряда устройства 40 хранения электричества и т.д. (этап S410).
[0056] HVECU 70 определяет, должна ли все еще или нет программа управления повышением температуры каталитического нейтрализатора на фиг. 4 и фиг. 5 начинаться посредством ECU 100 двигателя (этап S420). Когда определяется на этапе S420, что программа управления повышением температуры каталитического нейтрализатора все еще должна начинаться посредством ECU 100 двигателя (этап S420: Да), HVECU 70 устанавливает предварительно определенное значение Neref в качестве нижней предельной скорости Nelim, которая является нижним предельным значением скорости двигателя 10 (этап S430). Значение Neref является значением, большим, например, приблизительно на 400-500 об/мин по сравнению с нижним предельным значением скорости двигателя 10, когда программа управления повышением температуры каталитического нейтрализатора не выполняется. Процесс этапа S430 пропускается, после того как программа управления повышением температуры каталитического нейтрализатора начинается посредством ECU 100 двигателя.
[0057] После процесса этапа S420 или S430 HVECU 70 получает, из карты (не показана), скорость, которая соответствует требуемой мощности Pe*, и при которой двигатель 10 может эффективно работать, и устанавливает полученную скорость или нижнюю предельную скорость Nelim, в зависимости от того, какая выше, в качестве целевой скорости Ne* двигателя 10 (этап S440). На этапе S440 HVECU 70 устанавливает значение, полученное делением требуемой мощности Pe* на целевую скорость Ne*, в качестве целевого крутящего момента Te* двигателя 10. Дополнительно, в диапазонах допустимого электричества Win заряда и допустимого электричества Wout разряда устройства 40 хранения электричества, HVECU 70 устанавливает команду Tm1* крутящего момента для мотор-генератора MG1 согласно целевому крутящему моменту Te* и целевой скорости Ne* и команду Tm2* крутящего момента для мотор-генератора MG2 согласно требуемому крутящему моменту Tr* и команде Tm1* крутящего момента (этап S450).
[0058] Затем, по запросу от ECU 100 двигателя, HVECU 70 определяет, разрешать или нет выполнение программы управления повышением температуры каталитического нейтрализатора, т.е. прекращение подачи топлива в некоторые цилиндры 11 (далее в данном документе "прекращение подачи топлива" будет называться "отсечкой подачи топлива" по необходимости) (этап S460). На этапе S460 HVECU 70 вычисляет нехватку крутящего момента приведения в движение, получающуюся в результате отсечки подачи топлива для одного цилиндра 11, т.е. крутящий момент, который не выводится от двигателя 10 в результате отсечки подачи топлива (далее в данном документе называется "нехваткой крутящего момента" по необходимости). Более конкретно, HVECU 70 вычисляет нехватку крутящего момента посредством умножения значения, полученного делением требуемого крутящего момента Tr*, заданного на этапе S410 по числу цилиндров n двигателя 10 (в этом варианте осуществления, n=4), на передаточное отношение G между ротором мотор-генератора MG2 и приводным валом DS (= Tr* ∙ G/n). Дополнительно, на этапе S460, HVECU 70 определяет, может или нет эта нехватка крутящего момента быть компенсирована мотор-генератором MG2, на основе нехватки крутящего момента, команд Tm1*, Tm2* крутящего момента, заданных на этапе S450, и допустимого электричества Win заряда и допустимого электричества Wout разряда устройства 40 хранения электричества. Когда сигнал запроса добавления цилиндра с отсечкой подачи топлива или сигнал сокращения цилиндра с отсечкой подачи топлива был принят от ECU 100 двигателя, HVECU 70 определяет, может или нет нехватка крутящего момента быть компенсирована, с увеличением или уменьшением в числе цилиндров с отсечкой подачи топлива, принимаемой во внимание.
[0059] Когда определяется, в результате процесса определения на этапе S460, что нехватка крутящего момента приведения в движение, получающаяся в результате отсечки подачи топлива некоторых (одного или двух) цилиндров 11, может быть компенсирована посредством мотор-генератора MG2 (этап S470: Да), HVECU 70 отправляет сигнал разрешения отсечки подачи топлива в ECU 100 двигателя (этап S480). Сигнал разрешения отсечки подачи топлива включает в себя сигнал, который разрешает отсечку подачи топлива только для одного цилиндра 11, когда сигнал запроса добавления цилиндра с отсечкой подачи топлива отправляется из ECU 100 двигателя. Когда определяется, в результате процесса определения на этапе S460, что нехватка крутящего момента приведения в движение, получающаяся в результате отсечки подачи топлива некоторых цилиндров 11, не может быть компенсирована посредством мотор-генератора MG2 (этап S470: Нет), HVECU 70 отправляет сигнал запрета отсечки подачи топлива в ECU 100 двигателя (этап S485) и заканчивает программу на фиг. 6 пока что. В этом случае, выполнение программы управления повышением температуры каталитического нейтрализатора посредством ECU 100 двигателя отменяется или останавливается.
[0060] Когда HVECU 70 отправляет сигнал разрешения отсечки подачи топлива в ECU 100 двигателя на этапе S480, HVECU 70 отправляет требуемую мощность Pe*, заданную на этапе S410, и целевую скорость Ne*, заданную на этапе S440, в ECU 100 двигателя (этап S490). Дополнительно, HVECU 70 идентифицирует цилиндр 11, для которого момент начала впрыска топлива настанет следующим, на основе положения коленчатого вала от датчика 90 угла поворота коленчатого вала (этап S500). Когда определяется, в результате процесса идентификации на этапе S500, что момент начала впрыска топлива для цилиндра с отсечкой подачи топлива (первого цилиндра #1, или первого цилиндра #1 и четвертого цилиндра #4) настанет (этап S510: Нет), HVECU 70 повторно устанавливает команду Tm2* крутящего момента для мотор-генератора MG2 (этап S515).
[0061] На этапе S515 HVECU 70 задает сумму команды Tm2* крутящего момента, заданную на этапе S450, и нехватки крутящего момента (=Tr* ∙ G/n) в качестве новой команды Tm2* крутящего момента. После процесса этапа S515 HVECU 70 отправляет команду Tm1* крутящего момента, заданную на этапе S450, и команду Tm2* крутящего момента, повторно заданную на этапе S515, в MGECU 55 (этап S560) и заканчивает программу на фиг. 6 пока что. Таким образом, в то время как подача топлива в один из цилиндров 11 двигателя 10 прекращается (во время отсечки подачи топлива), мотор-генератор MG1 управляется посредством MGECU 55 с тем, чтобы вращать двигатель 10 с целевой скоростью Ne*, а мотор-генератор MG2 управляется посредством MGECU 55 с тем, чтобы компенсировать нехватку крутящего момента.
[0062] С другой стороны, когда определяется, в результате процесса идентификации на этапе S500, что момент начала впрыска топлива для цилиндров сжигания (со второго цилиндра #2 по четвертый цилиндр #4), или второго цилиндра #2 и третьего цилиндра #3) настанет (этап S510: Да), HVECU 70 определяет, равно или нет единице значение флага Fr обогащения, полученное на этапе S400 (этап S520). Когда определяется на этапе S520, что значение флага Fr обогащения равно единице (этап S520: Да), HVECU 70 вычисляет, из величины Acc срабатывания акселератора или целевого крутящего момента Te* и из степени увеличения топлива (в этом варианте осуществления, 20%) для одного цилиндра сжигания, используемого на этапе S230 на фиг. 4, избыточный крутящий момент Tex (положительное значение) для двигателя 10, получающийся в результате обогащения соотношения воздух-топливо для одного цилиндра сжигания (этап S530).
[0063] Дополнительно, HVECU 70 определяет, на основе избыточного крутящего момента Tex, целевой скорости Ne* и целевого крутящего момента Te*, заданных на этапе S440, команды Tm1* крутящего момента, заданной на этапе S450, допустимого электричества Win заряда устройства 40 хранения электричества и т.д., может или нет устройство 40 хранения электричества быть заряжено с помощью электричества, которое генерируется мотор-генератором MG1, когда избыточный крутящий момент Tex компенсируется, в то время как двигатель 10 вращается с целевой скоростью Ne* посредством мотор-генератора MG1 (этап S540). Когда определяется на этапе S540, что избыточный крутящий момент Tex может быть компенсирован посредством мотор-генератора MG1 (этап S540: Да), HVECU 70 повторно устанавливает команды Tm1*, Tm2* крутящего момента, принимая во внимание избыточный крутящий момент Tex (этап S550).
[0064] На этапе S550 HVECU 70 устанавливает новую команду Tm1* крутящего момента посредством добавления, к команде Tm1* крутящего момента, заданной на этапе S450, значения (отрицательного значения) компонента избыточного крутящего момента Tex, который действует на мотор-генератор MG1 через планетарный зубчатый механизм 30. На этапе S550 HVECU 70 задает новую команду Tm2* крутящего момента посредством вычитания, из команды Tm2* крутящего момента, значения (положительного значения) компонента избыточного крутящего момента Tex, который передается приводному валу DS через планетарный зубчатый механизм 30. После процесса на этапе S550 HVECU 70 отправляет повторно заданные команды Tm1*, Tm2* крутящего момента в MGECU 55 (этап S560) и заканчивает программу на фиг. 6 пока что. Таким образом, когда избыточный крутящий момент Tex может быть компенсирован посредством мотор-генератора MG1, мотор-генератор MG1 управляется посредством MGECU 55 с тем, чтобы вращать двигатель 10 с целевой скоростью Ne* и преобразовывать избыточную мощность двигателя 10 на основе избыточного крутящего момента Tex в электричество, в то время как топливо подается во все цилиндры сжигания, отличные от цилиндра отсечки подачи топлива, так что соотношения воздух-топливо для этих цилиндров сжигания обогащаются на этапах S230-S270 на фиг. 4. Между тем, мотор-генератор MG2 управляется посредством MGECU 55 с тем, чтобы выводить крутящий момент согласно команде Tm2* крутящего момента, заданной на этапе S450, без компенсации нехватки крутящего момента.
[0065] С другой стороны, когда определяется на этапе S540, что избыточный крутящий момент Tex не может быть компенсирован посредством мотор-генератора MG1 (этап S540: Нет), HVECU 70 отправляет сигнал запроса задержки зажигания для запроса задержки момента зажигания в ECU 100 двигателя (этап S555). Дополнительно, HVECU 70 отправляет команды Tm1*, Tm2* крутящего момента, заданные на этапе S450, в MGECU 55 (этап S560) и заканчивает программу на фиг. 6 пока что. Таким образом, когда избыточный крутящий момент Tex не может быть компенсирован посредством мотор-генератора MG1, мотор-генератор MG1 управляется посредством MGECU 55 с тем, чтобы вращать двигатель 10 с целевой скоростью Ne*, в то время как топливо подается во все цилиндры сжигания, отличные от цилиндра с отсечкой подачи топлива, так что соотношения воздух-топливо для этих цилиндров сжигания обогащаются на этапах S230-S270 на фиг. 4. Между тем, мотор-генератор MG2 управляется посредством MGECU 55 с тем, чтобы выводить крутящий момент согласно команде Tm2* крутящего момента, заданной на этапе S450, без компенсации нехватки крутящего момента. По приеме сигнала запроса задержки зажигания от HVECU 70, как показано на фиг. 7, ECU 100 двигателя задерживает момент зажигания для каждого цилиндра сжигания от оптимального момента зажигания (MBT), так что выходной крутящий момент двигателя 10 становится эквивалентным крутящему моменту, когда соотношения воздух-топливо для цилиндров сжигания устанавливаются в стехиометрическое соотношение воздух-топливо.
[0066] Когда определяется на этапе S520, что значение флага Fr обогащения равно нулю (этап S520: Нет), HVECU 70 отправляет команды Tm1*, Tm2* крутящего момента, заданные на этапе S450, в MGECU 55 (этап S560), и заканчивает программу на фиг. 6 пока что. Таким образом, когда значение флага Fr обогащения равно нулю, мотор-генератор MG1 управляется посредством MGECU 55 с тем, чтобы вращать двигатель 10 с целевой скоростью Ne*, в то время как топливо подается во все цилиндры сжигания, отличные от цилиндра с отсечкой подачи топлива, так что соотношения воздух-топливо для этих цилиндров сжигания принимают значение на обедненной стороне (слегка обогащенное значение) на этапе S310 на фиг. 5 и этапах S240-S270 на фиг. 4. Между тем, мотор-генератор MG2 управляется посредством MGECU 55 с тем, чтобы выводить крутящий момент согласно команде Tm2* крутящего момента, заданной на этапе S450, без компенсации нехватки крутящего момента.
[0067] В гибридном транспортном средстве 1, в результате выполнения программ, показанных на фиг. 3-6, когда величина Dpm нароста твердых частиц на сажевом фильтре 190 расположенного ниже по потоку регулирующего устройства 19 становится равной или больше порогового значения D1, сигнал запроса повышения температуры каталитического нейтрализатора отправляется из ECU 100 двигателя в HVECU 70, чтобы повышать температуры каталитического нейтрализатора 180 для регулирования выхлопных газов расположенного выше по потоку регулирующего устройства 18 и сажевого фильтра 190 расположенного ниже по потоку регулирующего устройства 19 (этап S150 на фиг. 3). Когда повышение температуры сажевого фильтра 190 и т.д. разрешается посредством HVECU 70, ECU 100 двигателя выполняет программу управления повышением температуры каталитического нейтрализатора (фиг. 4 и фиг. 5), которая включает прекращение подачи топлива в, по меньшей мере, один из цилиндров 11 двигателя 10 и подачу топлива в другие цилиндры 11, в то время как работа под нагрузкой двигателя 10 выполняется согласно водительскому нажатию на педаль 84 акселератора. Во время выполнения программы управления повышением температуры каталитического нейтрализатора HVECU 70 управляет мотор-генератором MG2 в качестве устройства генерирования движущей мощности с тем, чтобы компенсировать нехватку крутящего момента (нехватку приводной мощности), получающуюся в результате прекращения подачи топлива в, по меньшей мере, один из цилиндров 11 (фиг. 6).
[0068] Таким образом, нехватка крутящего момента, получающаяся в результате прекращения подачи топлива в некоторые из цилиндров 11, может быть компенсирована посредством мотор-генератора MG2 с высокой точностью и быстротой реакции, и крутящий момент согласно требуемому крутящему моменту Tr* может быть выведен к колесам W во время выполнения программы управления повышением температуры каталитического нейтрализатора. HVECU 70 (и MGECU 55) управляет мотор-генератором MG2 (электромотором) с тем, чтобы компенсировать нехватку крутящего момента, в то время как подача топлива в, по меньшей мере, один из цилиндров 11 прекращается (во время отсечки подачи топлива) (этапы S515-S560 на фиг. 6). Таким образом, ухудшение дорожных качеств гибридного транспортного средства 1 может быть очень надежно устранено во время выполнения программы управления повышением температуры каталитического нейтрализатора.
[0069] HVECU 70 задает нижнюю предельную скорость Nelim двигателя 10 более высокой, когда программа управления повышением температуры каталитического нейтрализатора выполняется, по сравнению с тем, когда программа управления повышением температуры каталитического нейтрализатора не выполняется (этап S430 на фиг. 6). Это может сокращать время, в течение которого подача топлива в некоторые цилиндры 11 прекращается, т.е. время, в течение которого крутящий момент не выводится от двигателя 10 вследствие отсечки подачи топлива. Таким образом, гибридное транспортное средство 1 может очень надежно предотвращать появление проблем вследствие отсечки подачи топлива для некоторых цилиндров 11, таких как вибрация двигателя 10.
[0070] Когда выполнение программы управления повышением температуры каталитического нейтрализатора разрешается посредством HVECU 70 (время t1 на фиг. 8), ECU 100 двигателя прекращает подачу топлива в один из цилиндров 11 (первый цилиндр #1) двигателя 10 и обогащает соотношения воздух-топливо для других цилиндров (второй цилиндр #2, третий цилиндр #3 и четвертый цилиндр #4) (этапы S230-S270 на фиг. 4). Таким образом, относительно большой объем воздуха, т.е. кислорода, вводится в верхнее и расположенное ниже по потоку регулирующие устройства 18, 19 из цилиндра 11 (цилиндра с отсечкой подачи топлива), к которому подача топлива прекращается, и относительно большой объем несгоревшего топлива вводится в эти устройства из цилиндров 11 (цилиндров сжигания), в которые топливо подается. В частности, верхнее и расположенное ниже по потоку регулирующие устройства 18, 19 снабжаются объемом воздуха (который является не обедненным атмосферным газом, а воздухом, почти несодержащим компоненты топлива), грубо равным емкости (объему) цилиндра 11, из цилиндра с отсечкой подачи топлива. В результате, во время работы под нагрузкой двигателя 10, относительно большое количество несгоревшего топлива может быть вынуждено реагировать в присутствии достаточного объема кислорода, и температуры каталитического нейтрализатора 180 для регулирования выхлопных газов и сажевого фильтра 190, поддерживающего каталитический нейтрализатор для регулирования выхлопных газов, могут быть в достаточной степени и быстро повышены с помощью тепла реакции, как показано на фиг. 8.
[0071] В то время как топливо таким образом подается во все цилиндры сжигания, отличные от цилиндра с отсечкой подачи топлива, с тем, чтобы обогащать соотношения воздух-топливо для этих цилиндров сжигания, HVECU 70 (и MGECU 55) управляет мотор-генератором MG1 (второй электромотор) с тем, чтобы преобразовывать избыточную мощность двигателя 10, получающуюся в результате обогащения соотношений воздух-топливо для других цилиндров 11 (цилиндров сжигания), в электричество (этапы S510-S560 на фиг. 6). Таким образом, возможно избегать снижения топливной экономичности двигателя 10 в результате выполнения программы управления повышением температуры каталитического нейтрализатора без усложнения управления мотор-генератором MG2, который компенсирует нехватку крутящего момента.
[0072] Когда зарядка устройства 40 хранения электричества ограничивается, и избыточная мощность двигателя 10 не может быть преобразована в электричество посредством мотор-генератора MG1, HVECU 70 отправляет сигнал запроса задержки зажигания для запроса задержки момента зажигания в ECU 100 двигателя (этап S555 на фиг. 6). По приеме сигнала запроса задержки зажигания ECU 100 двигателя задерживает момент зажигания для цилиндра сжигания от оптимального момента зажигания (MBT). Таким образом, даже когда зарядка устройства 40 хранения электричества с помощью электричества, сгенерированного посредством мотор-генератора MG1, ограничивается, дорожные качества гибридного транспортного средства 1 могут быть надежно обеспечены посредством устранения увеличения выходного крутящего момента двигателя 10, получающегося в результате обогащения соотношения воздух-топливо для цилиндра сжигания.
[0073] Во время выполнения управления повышением температуры каталитического нейтрализатора, после того как температура Tpf сажевого фильтра 190 становится равной или выше температуры Ty разрешения регенерации (пороговое значение первого определения) (время t2 на фиг. 8), ECU 100 двигателя изменяет соотношения воздух-топливо для всех других цилиндров 11 (цилиндров сжигания) в обедненную сторону до слегка обогащенных соотношений, в то же время прекращая подачу топлива в один цилиндр 11 (первый цилиндр #1) (этап S310 на фиг. 5 и т.д.). Дополнительно, во время выполнения управления повышением температуры каталитического нейтрализатора, после того как температура Tpf сажевого фильтра 190 становится равной или выше температуры Tz способствования регенерации (пороговое значение второго определения), более высокой по сравнению с температурой Ty разрешения регенерации (время t3 на фиг. 8), ECU 100 двигателя прекращает подачу топлива в один из других цилиндров 11 (четвертый цилиндр #4) (этап S305 на фиг. 5 и т.д.), при условии, что нехватка крутящего момента, получающаяся в результате выполнения программы управления повышением температуры каталитического нейтрализатора, может быть компенсирована посредством мотор-генератора MG2 (этапы S460-S480 на фиг. 6).
[0074] Таким образом, представляется возможным подавать больше кислорода из более чем одного цилиндра с отсечкой подачи топлива в расположенное выше по потоку и расположенное ниже по потоку регулирующие устройства 18, 19, температуры которых достаточно повысились, в то же время устойчиво осуществляя работу двигателя 10, в котором подача топлива в некоторые цилиндры 11 прекращается. Следовательно, гибридное транспортное средство 1 может вводить большой объем кислорода из более чем одного цилиндра с отсечкой подачи топлива в сажевый фильтр 190, температура которого повысились вместе с температурой каталитического нейтрализатора для регулирования выхлопных газов, и, тем самым, надежно сжигать твердые частицы, наросшие на сажевом фильтре 190. Гибридное транспортное средство 1 может также надежно смягчать S- и HC-отравление каталитического нейтрализатора 180 для регулирования выхлопных газов расположенного выше по потоку регулирующего устройства 18.
[0075] Когда добавление цилиндра с отсечкой подачи топлива разрешается посредством HVECU 70, ECU 100 двигателя выбирает, в качестве нового цилиндра с отсечкой подачи топлива, цилиндр 11 (четвертый цилиндр #4), для которого выполнение впрыска топлива (зажигания) не является непрерывным с выполнением впрыска топлива для первого цилиндра 11 (первого цилиндра #1), когда программа управления повышением температуры каталитического нейтрализатора не выполняется. В частности, при прекращении подачи топлива в два цилиндра (более чем один цилиндр) 11, ECU 100 двигателя выполняет программу управления повышением температуры каталитического нейтрализатора с тем, чтобы подавать топливо в, по меньшей мере, один из цилиндров 11 после прекращения подачи топлива в один из цилиндров 11. Таким образом, прекращение подачи топлива в один цилиндр 11 и прекращение подачи топлива в другой цилиндр 11 не происходят последовательно, так что ухудшения с точки зрения звука двигателя и колебания в крутящем моменте, выводимом от двигателя 10, можно избегать.
[0076] Когда температура Tpf сажевого фильтра 190 становится ниже температуры Tx начала управления повышением температуры (время t4 на фиг. 8), после того как цилиндр с отсечкой подачи топлива добавляется, как показано на фиг. 8, ECU 100 двигателя сокращает число цилиндров с отсечкой подачи топлива и обогащает соотношения воздух-топливо для цилиндров 11 (цилиндров сжигания), в которые топливо подается (этап S325 на фиг. 5 и этапы S220-S270 на фиг. 4). Таким образом, когда температуры расположенного выше по потоку и расположенного ниже по потоку регулирующих устройств 18, 19 уменьшаются, когда цилиндр с отсечкой подачи топлива добавляется, и объем воздуха, вводимого в эти устройства, увеличивается, представляется возможным повышать температуры верхнего и расположенного ниже по потоку регулирующих устройств 18, 19, снова обогащая соотношения воздух-топливо для цилиндров сжигания, и удерживать температуры верхнего и расположенного ниже по потоку регулирующих устройств 18, 19 от понижения посредством сокращения числа цилиндров с отсечкой подачи топлива, с тем, чтобы уменьшать объем воздуха, вводимого в это устройство.
[0077] Когда величина Dpm нароста на сажевом фильтре 190 становится равной или меньше порогового значения D0 (время t5 на фиг. 8), ECU 100 двигателя выключает флаг повышения температуры каталитического нейтрализатора и заканчивает программу управления повышением температуры каталитического нейтрализатора. Однако, когда время, в течение которого акселератор нажимается, является относительно коротким, и величина Dpm нароста на сажевом фильтре 190 не становится равной или меньше порогового значения D0 в течение этого времени, программы на фиг. 4-6 прерываются пока что и возобновляются, когда водитель нажимает на педаль 84 акселератора в следующий раз.
[0078] Как было описано выше, во время работы под нагрузкой двигателя 10, гибридное транспортное средство 1 может в достаточной степени и быстро повышать температуры верхнего и расположенного ниже по потоку регулирующих устройств 18, 19 и подавать достаточный объем кислорода в верхнее и расположенное ниже по потоку регулирующие устройства 18, 19, чтобы регенерировать каталитический нейтрализатор 180 для регулирования выхлопных газов и сажевый фильтр 190, в то же время избегая ухудшения дорожных качеств. Вышеописанная программа управления повышением температуры каталитического нейтрализатора может регенерировать сажевый фильтр 190 посредством надежного сжигания твердых частиц, наросших на сажевом фильтре 190, даже в окружающей среде с низкой температурой, когда большое количество твердых частиц имеет тенденцию нарастать на сажевом фильтре 190, особенно в окружающей среде с экстремально низкой температурой, когда ежедневная средняя температура может падать ниже -20°C.
[0079] В вышеописанном варианте осуществления соотношения воздух-топливо для всех цилиндров сжигания, отличных от цилиндра с отсечкой подачи топлива, обогащаются, когда выполнение программы управления повышением температуры каталитического нейтрализатора разрешается. Однако изобретение не ограничивается этим аспектом. В начале программы управления повышением температуры каталитического нейтрализатора гибридное транспортное средство 1 может устанавливать соотношения воздух-топливо для цилиндров сжигания в стехиометрическое соотношение воздух-топливо вместо обогащения соотношений воздух-топливо для цилиндров сжигания. Гибридное транспортное средство 1, имеющее этот аспект, затрачивает больше времени для повышения температур верхнего и расположенного ниже по потоку регулирующих устройств 18, 19 по сравнению с тем, когда соотношения воздух-топливо для цилиндров сжигания являются обогащенными, но может вынуждать несгоревшее топливо реагировать в присутствии достаточного кислорода и в достаточной степени повышать температуры верхнего и расположенного ниже по потоку регулирующих устройств 18, 19 с помощью тепла реакции. Кроме того, с продолжающимся прекращением подачи топлива в некоторые цилиндры 11, достаточный объем кислорода может быть подан в верхнее и расположенное ниже по потоку регулирующие устройства 18, 19, температуры которых повысились.
[0080] В вышеописанном варианте осуществления соотношения воздух-топливо для всех цилиндров сжигания изменяются в обедненную сторону, после того как температура Tpf сажевого фильтра 190 становится равной или выше температуры Ty разрешения регенерации (порогового значения первого определения). Однако изобретение не ограничивается этим аспектом. Гибридное транспортное средство 1 может поддерживать соотношения воздух-топливо для других цилиндров 11, отличных от цилиндра с отсечкой подачи топлива, в богатых соотношениях до тех пор, пока температура Tpf сажевого фильтра 190 не достигнет температуры Tz способствования регенерации (порогового значения определения). После того как температура Tpf становится равной или выше температуры Tz способствования регенерации, гибридное транспортное средство 1 может прекращать подачу топлива в один из других цилиндров 11 и изменять соотношение воздух-топливо для цилиндра 11 среди других цилиндров 11, в который подача топлива не прекращается, в обедненную сторону (до слегка обогащенного соотношения), при условии, что нехватка крутящего момента может быть компенсирована посредством мотор-генератора MG2. Гибридное транспортное средство 1, имеющее этот аспект, может подавать больше кислорода в верхнее и расположенное ниже по потоку регулирующие устройства 18, 19 после достаточного и быстрого повышения температур каталитического нейтрализатора 180 для регулирования выхлопных газов и сажевого фильтра 190.
[0081] На этапе S310 на фиг. 5 объемы впрыска топлива могут быть установлены так, что соотношения воздух-топливо для всех цилиндров сжигания, отличных от цилиндра с отсечкой подачи топлива, становятся обедненными. Когда температура Tpf сажевого фильтра 190 становится равной или выше температуры Tz способствования регенерации, гибридное транспортное средство 1 может изменять соотношения воздух-топливо для всех цилиндров сжигания, отличных от цилиндра с отсечкой подачи топлива, на обедненные соотношения, как указано штрих-двухпунктирной линией на фиг. 8, вместо добавления цилиндра с отсечкой подачи топлива. При изменении соотношений воздух-топливо для цилиндров сжигания во время выполнения программы управления повышением температуры каталитического нейтрализатора гибридное транспортное средство 1 может постепенно изменять соотношение воздух-топливо для каждого цилиндра сжигания, например, согласно изменениям в температуре Tpf сажевого фильтра 190, как указано штриховой линией на фиг. 8.
[0082] Гибридное транспортное средство 1 может преобразовывать избыточную мощность двигателя 10, получающуюся в результате обогащения соотношения воздух-топливо для цилиндра сжигания, в электричество посредством мотор-генератора MG2 вместо мотор-генератора MG1. В таком случае, определяется на этапе S540 на фиг. 6, может или нет устройство 40 хранения электричества быть заряжено с помощью электричества, которое генерируется посредством мотор-генератора MG2, когда избыточный крутящий момент Tex компенсируется за счет мотор-генератора MG2. Затем, на этапе S550 на фиг. 6, команда Tm2* крутящего момента повторно задается посредством уменьшения крутящего момента, соответствующего избыточному крутящему моменту Tex из команды Tm2* крутящего момента, заданной на этапе S450. На этапе S560 команда Tm1* крутящего момента, заданная на этапе S450, и команда Tm2* крутящего момента, повторно заданная на этапе S550, отправляются в MGECU 55. Сигнал запроса задержки зажигания может отправляться в ECU 100 двигателя каждый раз, когда определяется на этапе S520 на фиг. 6, что значение флага Fr обогащения равно единице. Гибридное транспортное средство 1, имеющее эти аспекты, может также надежно обеспечивать дорожные качества, выводя крутящий момент согласно требуемому крутящему моменту Tr* к колесам W при обогащении соотношения воздух-топливо для цилиндра сжигания во время выполнения программы управления повышением температуры каталитического нейтрализатора.
[0083] Двигатель 10 гибридного транспортного средства 1 является рядным двигателем, и программа управления повышением температуры каталитического нейтрализатора выполняется с возможностью прекращать подачу топлива в, по меньшей мере, один цилиндр 11 в течение одного цикла. Однако изобретение не ограничивается этим аспектом. Двигатель 10 гибридного транспортного средства 1 может быть V-образным двигателем, горизонтальным оппозитным двигателем, или W-образным двигателем, в котором каждый ряд цилиндров снабжается устройством для регулирования выхлопных газов. В этом случае, программа управления повышением температуры каталитического нейтрализатора может быть сконфигурирована так, что подача топлива в, по меньшей мере, один цилиндр в каждом ряду цилиндров прекращается во время одного цикла. Таким образом, достаточный объем кислорода может быть отправлен в устройство для регулирования выхлопных газов в каждом ряду цилиндров V-образного двигателя и т.д.
[0084] Расположенное ниже по потоку регулирующее устройство 19 может включать в себя каталитический нейтрализатор для регулирования выхлопных газов (трехкомпонентный нейтрализатор), расположенный на стороне выше по потоку, и сажевый фильтр, расположенный на стороне ниже по потоку от этого каталитического нейтрализатора для регулирования выхлопных газов. В этом случае, расположенное выше по потоку регулирующее устройство 18 может быть опущено из гибридного транспортного средства 1. Альтернативно, расположенное ниже по потоку регулирующее устройство 19 может включать в себя только сажевый фильтр. В этом случае, когда температура каталитического нейтрализатора для регулирования выхлопных газов расположенного выше по потоку регулирующего устройства 18 повышается посредством выполнения программы управления повышением температуры каталитического нейтрализатора, температура расположенного ниже по потоку регулирующего устройства 19 (сажевого фильтра 190) может быть повышена с помощью выхлопных газов высокой температуры, втекающих из расположенного выше по потоку регулирующего устройства 18.
[0085] В гибридном транспортном средстве 1 мотор-генератор MG1 может быть соединен с солнечным зубчатым колесом 31 планетарного зубчатого механизма 30; выходной элемент может быть соединен с коронным зубчатым колесом 32; и двигатель 10 и мотор-генератор MG2 могут быть соединены с водилом 34 планетарной передачи. Ступенчатая трансмиссия может быть соединена с коронным зубчатым колесом 32 планетарного зубчатого механизма 30. Планетарный зубчатый механизм 30 гибридного транспортного средства 1 может состоять из четырехэлементного двухступенчатого планетарного зубчатого механизма, включающего в себя две планетарные передачи. В этом случае, двигатель 10 может быть соединен с входным элементом двухступенчатого планетарного зубчатого механизма; выходное устройство может быть соединено с выходным элементом; мотор-генератор MG1 может быть соединен с одним из двух других вращающихся элементов; а мотор-генератор MG2 может быть соединен с другим вращающимся элементом. Двухступенчатый планетарный зубчатый механизм может быть снабжен муфтой сцепления, которая соединяет вместе два из четырех вращающихся элементов, и тормозом, который может фиксировать один из вращающихся элементов так, чтобы не вращаться. Гибридное транспортное средство 1 может быть сконфигурировано как подключаемое к розетке гибридное транспортное средство, устройство 40 хранения электричества которого может заряжаться с помощью электричества от внешнего источника питания, такого как источник питания домовладения или быстрое зарядное устройство, установленное на заправочной станции. Контроллер в данном раскрытии включает в себя несколько ECU (HVECU 70, ECU 100 двигателя, MGECU 55) в гибридном транспортном средстве 1.
[0086] Фиг. 9 представляет собой схематичный чертеж конфигурации, показывающий другое гибридное транспортное средство 1B этого изобретения. Те компоненты гибридного транспортного средства 1B, которые являются такими же, что и в гибридном транспортном средстве 1, будут обозначены теми же ссылочными позициями, и перекрывающееся описание будет пропущено.
[0087] Гибридное транспортное средство 1B, показанное на фиг. 9, является последовательно-параллельным гибридным транспортным средством, включающим в себя двигатель (двигатель внутреннего сгорания) 10B, имеющий множество цилиндров (не показаны), мотор-генераторы (синхронные мотор-генераторы) MG1, MG2 и узел 20B моста и коробки передач. Двигатель 10B включает в себя расположенное выше по потоку регулирующее устройство 18 и расположенное ниже по потоку регулирующее устройство 19 в качестве устройств для регулирования выхлопных газов. Коленчатый вал (не показан) двигателя 10B, ротор мотор-генератора MG1 и колесо W1 соединяются с узлом 20B моста и коробки передач. Дополнительно, мотор-генератор MG2 соединяется с колесом W2, отличным от колеса W1. Альтернативно, мотор-генератор MG2 может быть соединен с колесом W1. Узел 20B моста и коробки передач может включать в себя ступенчатую коробку передач, бесступенчатую коробку передач, коробку передач с двойным сцеплением или т.п.
[0088] Когда работа двигателя 10B прекращается, гибридное транспортное средство 1B может двигаться от приводного крутящего момента (движущей мощности), по меньшей мере, от одного из мотор-генераторов MG1, M2, которые приводятся в действие с помощью электричества из устройства 40 хранения электричества. Гибридное транспортное средство 1B может также преобразовывать всю мощность от двигателя 10B при работе с нагрузкой в электричество посредством мотор-генератора MG1 и приводить в действие мотор-генератор MG2 с помощью электричества от мотор-генератора MG1. Кроме того, гибридное транспортное средство 1B может передавать крутящий момент приведения в движение (приводную мощность) от двигателя 10B при работе под нагрузкой к колесу W1 через узел 20B моста и коробки передач.
[0089] В гибридном транспортном средстве 1B та же программа управления повышением температуры каталитического нейтрализатора, что и программа, показанная на фиг. 4 и фиг. 5, выполняется посредством ECU двигателя (не показан), в то время как крутящий момент приведения в движение от двигателя 10B при работе под нагрузкой передается к колесу W1 через узел 20B моста и коробки передач. Во время выполнения программы управления повышением температуры каталитического нейтрализатора мотор-генератор MG2 управляется с тем, чтобы компенсировать нехватку крутящего момента приведения в движение, получающуюся в результате отсечки подачи топлива для некоторых цилиндров двигателя 10B. Таким образом, гибридное транспортное средство 1B может добиваться рабочих результатов, аналогичных результатам гибридного транспортного средства 1. В гибридном транспортном средстве 1B, коробка передач, включенная в узел 20B моста и коробки передач, может понижать передачу (передаточное отношение может быть изменено) при необходимости так, чтобы задавать скорость двигателя 10B равной или выше предварительно определенной скорости, во время выполнения программы управления повышением температуры каталитического нейтрализатора. Таким образом, увеличение скорости двигателя 10B может сокращать время, в течение которого подача топлива в некоторые цилиндры прекращается, так что появление проблем, таких как вибрация двигателя 10B, может быть очень надежно предотвращено.
[0090] Фиг. 10 представляет собой схематичный чертеж конфигурации, показывающий еще одно другое гибридное транспортное средство 1C этого изобретения. Те компоненты гибридного транспортного средства 1C, которые являются такими же, что и в гибридном транспортном средстве 1 и т.д., будут обозначены теми же ссылочными позициями, и перекрывающееся описание будет пропущено.
[0091] Гибридное транспортное средство 1C, показанное на фиг. 10, является последовательно-параллельным гибридным транспортным средством, включающим в себя двигатель (двигатель внутреннего сгорания) 10C, имеющий множество цилиндров (не показаны) и мотор-генераторы (синхронные мотор-генераторы) MG1, MG2. В гибридном транспортном средстве 1C коленчатый вал двигателя 10C и ротор мотор-генератора MG1 соединяются с первым валом S1, и мотор-генератор MG1 может преобразовывать, по меньшей мере, часть мощности от двигателя 10C в электричество. Ротор мотор-генератора MG2 соединяется со вторым валом S2 непосредственно или через механизм 120 передачи мощности, включающий в себя зубчатую передачу, и второй вал S2 соединяется с колесами W через дифференциальную передачу 39 и т.д. Альтернативно, мотор-генератор MG2 может быть соединен с другими колесами (не показаны), отличными от колес W. Гибридное транспортное средство 1C дополнительно включает в себя муфту K сцепления, которая соединяет и разъединяет первый вал S1 и второй вал S2 друг с другом. В гибридном транспортном средстве 1C механизм 120 передачи мощности, муфта K сцепления и дифференциальная передача 39 могут быть включены в узел моста и коробки передач.
[0092] Когда муфта K сцепления сцеплена, гибридное транспортное средство 1C может выводить крутящий момент приведения в движение от двигателя 10C на второй вал S2, т.е. к колесам W. В гибридном транспортном средстве 1C та же программа управления повышением температуры каталитического нейтрализатора, что и программа, показанная на фиг. 4 и фиг. 5, выполняется посредством ECU двигателя (не показан), в то время как двигатель 10C и второй вал S2, т.е. колеса W, соединяются вместе посредством муфты K сцепления, и работа под нагрузкой двигателя 10C выполняется согласно водительскому нажатию на педаль акселератора. Во время выполнения программы управления повышением температуры каталитического нейтрализатора мотор-генератор MG2 управляется с тем, чтобы компенсировать нехватку крутящего момента приведения в движение, получающуюся в результате отсечки подачи топлива для некоторых цилиндров двигателя 10C. Таким образом, гибридное транспортное средство 1C может добиваться рабочих результатов, аналогичных результатам гибридного транспортного средства 1 и т.д.
[0093] Фиг. 11 представляет собой схематичный чертеж конфигурации, показывающий другое гибридное транспортное средство 1D этого изобретения. Те компоненты гибридного транспортного средства 1D, которые являются такими же, что и в гибридном транспортном средстве 1 и т.д., будут обозначены теми же ссылочными позициями, и перекрывающееся описание будет пропущено.
[0094] Гибридное транспортное средство 1D, показанное на фиг. 11, является параллельным гибридным транспортным средством, включающим в себя: двигатель (двигатель внутреннего сгорания) 10D, имеющий множество цилиндров (не показаны); мотор-генератор (синхронный мотор-генератор) MG; гидравлическую муфту K0 сцепления; устройство 21 передачи мощности; устройство хранения электричества (высоковольтный аккумулятор) 40D; вспомогательный аккумулятор (низковольтный аккумулятор) 42; PCU 50D, который приводит в действие мотор-генератор MG; MGECU 55B, который управляет PCU 50D; и главный электронный блок управления (далее в данном документе называемый "главным ECU") 170, который управляет двигателем 10D и устройством 21 передачи мощности. Двигатель 10D включает в себя расположенное выше по потоку регулирующее устройство 18 и расположенное ниже по потоку регулирующее устройство 19 в качестве устройств для регулирования выхлопных газов, и коленчатый вал двигателя 10D соединяется с входным элементом демпферного механизма 24. Мотор-генератор MG работает как электромотор, который приводится в действие с помощью электричества из устройства 40D хранения электричества и создает крутящий момент приведения в движение, и выводит рекуперативный тормозной крутящий момент, чтобы тормозить гибридное транспортное средство 1D. Мотор-генератор MG работает также как генератор мощности, который преобразует, по меньшей мере, часть мощности от двигателя 10D при работе под нагрузкой в электричество. Ротор мотор-генератора MG прикрепляется к входному валу 21i устройства 21 передачи мощности, как показано на фиг. 11.
[0095] Муфта K0 сцепления соединяет и разъединяет выходной элемент демпферного механизма 24, т.е. коленчатый вал двигателя 10D и входной вал 21i, т.е. ротор мотор-генератора MG друг с другом. Устройство 21 передачи мощности включает в себя преобразователь крутящего момента (устройство гидравлической передачи) 22, много- или однодисковую блокирующую муфту 23, механический масляный насос MOP, приводимый в действие с помощью электричества масляный насос EOP, коробку передач 25, и гидравлическое управляющее устройство 27, которое регулирует давление рабочей жидкости. Коробка передач 25 является, например, четырех-десятискоростной автоматической коробкой передач и включает в себя множество планетарных передач, множество муфт сцепления и множество тормозов (фрикционных сцепляющих элементов). Коробка передач 25 изменяет скорость мощности, передаваемой от входного вала 21i, либо через преобразователь 22 крутящего момента, либо через блокирующую муфту 23 на множестве ступеней, и выводит эту мощность от выходного вала 21o устройства 21 передачи мощности на вал DS привода через дифференциальную передачу 39. Альтернативно, коробка передач 25 может быть механической бесступенчатой коробкой передач, коробкой передач с двойным сцеплением или т.п. Муфта сцепления, которая соединяет и разъединяет ротор мотор-генератора MG и входной вал 21i устройства 21 передачи мощности друг с другом, может быть расположена между ними (см. штрих-двухпунктирную линию на фиг. 11).
[0096] В гибридном транспортном средстве 1D та же программа управления повышением температуры каталитического нейтрализатора, что и программа, показанная на фиг. 4 и фиг. 5, выполняется посредством главного ECU 170, в то время как коленчатый вал двигателя 10D и входной вал 21i, т.е. мотор-генератор MG, соединяются вместе посредством муфты K0 сцепления, и работа под нагрузкой двигателя 10D выполняется согласно водительскому нажатию на педаль акселератора. Во время выполнения программы управления повышением температуры каталитического нейтрализатора главный ECU 170 и MGECU 55D управляют мотор-генератором MG с тем, чтобы компенсировать нехватку крутящего момента приведения в движение, получающуюся в результате отсечки подачи топлива для некоторых цилиндров двигателя 10D. Таким образом, гибридное транспортное средство 1D может добиваться рабочих результатов, аналогичных результатам гибридного транспортного средства 1 и т.д. Когда соотношение воздух-топливо для цилиндра сжигания обогащается в гибридном транспортном средстве 1D, избыточная мощность двигателя 10D может быть преобразована в электричество посредством мотор-генератора MG, и увеличения в выходном крутящем моменте двигателя 10D можно избежать посредством задержки момента зажигания. Дополнительно, в гибридном транспортном средстве 1D, коробка передач 25 может понижать передачу (передаточное отношение может быть изменено) при необходимости так, чтобы задавать скорость двигателя 10D равной или выше предварительно определенной скорости во время выполнения программы управления повышением температуры каталитического нейтрализатора. Контроллер в данном раскрытии включает в себя несколько ECU (основной ECU 170 и MGECU 55D) в гибридном транспортном средстве 1D.
[0097] Фиг. 12 представляет собой схематичный чертеж конфигурации, показывающий еще одно другое гибридное транспортное средство 1E этого изобретения. Те компоненты гибридного транспортного средства 1E, которые являются такими же, что и в гибридном транспортном средстве 1 и т.д., будут обозначены теми же ссылочными позициями, и перекрывающееся описание будет пропущено.
[0098] Гибридное транспортное средство 1E, показанное на фиг. 12, включает в себя: двигатель (двигатель внутреннего сгорания) 10E, имеющий множество цилиндров (не показаны); мотор-генератор (синхронный мотор-генератор) MG; устройство 21E передачи мощности; высоковольтный аккумулятор 40E; низковольтный аккумулятор (вспомогательный аккумулятор (42E); DC-DC-преобразователь 44, соединенный с высоковольтным аккумулятором 40E и низковольтным аккумулятором 42E; инвертор 54, который приводит в действие мотор-генератор MG; ECU 100E двигателя, который управляет двигателем 10E; MGECU 55E, который управляет DC-DC-преобразователем 44 и инвертором 54; и HVECU 70E, который управляет всем транспортным средством. Двигатель 10E включает в себя расположенное выше по потоку регулирующее устройство 18 и расположенное ниже по потоку регулирующее устройство 19 в качестве устройств для регулирования выхлопных газов, и коленчатый вал 12 двигателя 10E соединяется с входным элементом демпферного механизма (не показан), включенного в устройство 21E передачи мощности. Двигатель 10E дополнительно включает в себя стартер 130, который выводит крутящий момент для проворачивания коленчатого вала к коленчатому валу 12 и запускает двигатель 10E.
[0099] Ротор мотор-генератора MG соединяется с концом коленчатого вала 12 двигателя 10E на противоположной стороне от устройства 21E передачи мощности через передаточный механизм 140. В этом варианте осуществления передаточный механизм 140 является наматываемым передаточным механизмом, зубчатым передаточным механизмом или цепным механизмом. Альтернативно, мотор-генератор MG может быть расположен между двигателем 10E и устройством 21E передачи мощности и может быть электромотором постоянного тока. Устройство 21E передачи мощности включает в себя, в дополнение к демпферному механизму, преобразователь крутящего момента (устройство гидравлической передачи), много- или однодисковую блокирующую муфту, коробку передач и гидравлическое устройство управления, которое регулирует давление рабочей жидкости. Коробка передач устройства 21E передачи мощности является ступенчатой коробкой передач, механической бесступенчатой коробкой передач, коробкой передач с двойным сцеплением или т.п.
[0100] Гибридное транспортное средство 1E может запускать двигатель 10E, выводя крутящий момент для проворачивания коленчатого вала от мотор-генератора MG к коленчатому валу 12 через передаточный механизм 140. В то время как гибридное транспортное средство 1E движения, мотор-генератор MG работает, главным образом, как генератор мощности, который преобразует часть мощности от двигателя 10E при работе под нагрузкой в электричество, и приводится в действие с помощью электричества из высоковольтного аккумулятора 40E, когда необходимо выводить крутящий момент приведения в движение (вспомогательный крутящий момент) к коленчатому валу 12 двигателя 10E. Дополнительно, мотор-генератор MG выводит рекуперативный тормозной крутящий момент к коленчатому валу 12 двигателя 10E, чтобы тормозить гибридное транспортное средство 1E.
[0101] Также в гибридном транспортном средстве 1E та же программа управления повышением температуры каталитического нейтрализатора, что и программа, показанная на фиг. 4 и фиг. 5, выполняется посредством ECU 100E двигателя, в то время как работа под нагрузкой двигателя 10E выполняется согласно водительскому нажатию на педаль акселератора. Во время выполнения программы управления повышением температуры каталитического нейтрализатора HVECU 70E и MGECU 55D управляют мотор-генератором MG с тем, чтобы компенсировать нехватку крутящего момента приведения в движение, получающуюся в результате отсечки подачи топлива для некоторых цилиндров двигателя 10E. Таким образом, гибридное транспортное средство 1E может добиваться рабочих результатов, аналогичных результатам гибридного транспортного средства 1 и т.д. Когда соотношение воздух-топливо для цилиндра сжигания обогащается в гибридном транспортном средстве 1E, избыточная мощность двигателя 10E может быть преобразована в электричество посредством мотор-генератора MG, и увеличения в выходном крутящем моменте двигателя 10E можно избежать посредством задержки момента зажигания. Дополнительно, в гибридном транспортном средстве 1E, коробка передач устройства 21E передачи мощности может понижать передачу (передаточное отношение может быть изменено) при необходимости так, чтобы задавать скорость двигателя 10E равной или выше предварительно определенной скорости во время выполнения программы управления повышением температуры каталитического нейтрализатора. Контроллер в данном раскрытии включает в себя несколько ECU (HVECU 70E, ECU 100E двигателя и MGECU 55E) в гибридном транспортном средстве 1E.
[0102] Как было описано выше, гибридное транспортное средство этого изобретения включает в себя многоцилиндровый двигатель, устройство для регулирования выхлопных газов, включающее в себя каталитический нейтрализатор, который удаляет вредные компоненты выхлопных газов из многоцилиндрового двигателя, электромотор и устройство хранения электричества, которое обменивается электричеством с электромотором. По меньшей мере, один из многоцилиндрового двигателя и электромотора выводит приводную мощность к колесу. Гибридное транспортное средство включает в себя контроллер, который, по запросу повышения температуры каталитического нейтрализатора во время работы под нагрузкой многоцилиндрового двигателя, выполняет управление повышением температуры каталитического нейтрализатора, которое включает прекращение подачи топлива в, по меньшей мере, один из цилиндров и обогащение соотношений воздух-топливо для других цилиндров, отличных, по меньшей мере, от первого цилиндра, и управляет электромотором так, чтобы покрывать нехватку приводной мощности, получающуюся в результате выполнения управления повышением температуры каталитического нейтрализатора.
[0103] Контроллер гибридного транспортного средства этого изобретения выполняется с возможностью, по запросу повышения температуры каталитического нейтрализатора во время работы под нагрузкой многоцилиндрового двигателя, выполнять управление повышением температуры каталитического нейтрализатора, которое включает прекращение подачи топлива в, по меньшей мере, один из цилиндров многоцилиндрового двигателя и обогащение соотношений воздух-топливо для других цилиндров. Таким образом, во время выполнения управления повышением температуры каталитического нейтрализатора, относительно большой объем воздуха, т.е. кислорода, вводится в устройство для регулирования выхлопных газов из цилиндра, в который подача топлива прекращается, и относительно большой объем несгоревшего топлива вводится в устройство для регулирования выхлопных газов из цилиндра, в который топливо подается. В результате, является возможным вынуждать относительно большой объем несгоревшего топлива реагировать в присутствии достаточного кислорода и в достаточной мере и быстро повышать температуру каталитического нейтрализатора с помощью тепла реакции во время работы под нагрузкой многоцилиндрового двигателя. С продолжающимся прекращением подачи топлива в некоторые цилиндры достаточный объем кислорода может быть подан в устройство для регулирования выхлопных газов, температура которого была повышена. Кроме того, во время выполнения управления повышением температуры каталитического нейтрализатора, электромотор управляется контроллером так, чтобы покрывать нехватку приводной мощности, получающуюся в результате выполнения управления повышением температуры каталитического нейтрализатора, т.е. прекращения подачи топлива в, по меньшей мере, один цилиндр. Таким образом, во время выполнения управления повышением температуры каталитического нейтрализатора, нехватка приводной мощности, получающаяся в результате прекращения подачи топлива в некоторые цилиндры, может быть покрыта посредством электромотора с высокой точностью и быстротой реагирования, и приводная мощность, которая требуется, может быть выведена к колесам. Следовательно, во время работы под нагрузкой многоцилиндрового двигателя, гибридное транспортное средство этого изобретения может в достаточной степени повышать температуру каталитического нейтрализатора устройства для регулирования выхлопных газов и подавать достаточный объем кислорода в устройство для регулирования выхлопных газов, в то же время избегая ухудшения дорожных качеств.
[0104] Контроллер может управлять электромотором так, чтобы покрывать нехватку приводной мощности, в то время как подача топлива в, по меньшей мере, один цилиндр прекращается. Таким образом, ухудшение в дорожных качествах транспортного средства может быть очень надежно устранено, когда управление повышением температуры каталитического нейтрализатора выполняется.
[0105] Контроллер может задерживать момент зажигания для других цилиндров так, чтобы избегать увеличения в выходной мощности многоцилиндрового двигателя, получающегося в результате обогащения соотношений воздух-топливо для других цилиндров. Таким образом, даже когда соотношения воздух-топливо для цилиндров, в которые топливо подается во время выполнения управления повышением температуры каталитического нейтрализатора, обогащаются, приводная мощность, которая требуется, может быть выведена к колесам, и дорожные качества транспортного средства могут быть надежно обеспечены. Альтернативно, избыточная мощность многоцилиндрового двигателя, получающаяся в результате обогащения соотношений воздух-топливо, может быть преобразована в электричество посредством электромотора.
[0106] Гибридное транспортное средство может дополнительно включать в себя второй электромотор, который преобразует, по меньшей мере, часть мощности от многоцилиндрового двигателя в электричество и обменивается электричеством с устройством хранения электричества. Контроллер может управлять вторым электромотором так, чтобы преобразовывать избыточную мощность многоцилиндрового двигателя, получающуюся в результате обогащения соотношений воздух-топливо для других цилиндров, в электричество. Таким образом, является возможным избегать уменьшения топливной экономичности многоцилиндрового двигателя в результате выполнения управления повышением температуры каталитического нейтрализатора, без усложнения управления электромотором, которое покрывает нехватку приводной мощности.
[0107] Контроллер может задерживать момент зажигания для других цилиндров, когда второй электромотор является неспособным преобразовывать избыточную мощность многоцилиндрового двигателя в электричество. Таким образом, даже когда зарядка устройства хранения электричества электричеством, генерируемым посредством второго электромотора, является ограниченной, дорожные качества транспортного средства могут быть надежно обеспечены, избегая увеличения в выходной мощности многоцилиндрового двигателя, получающегося в результате обогащения соотношений воздух-топливо.
[0108] Гибридное транспортное средство может дополнительно включать в себя ведущий мост в блоке с коробкой передач, который соединяется с выходным валом многоцилиндрового двигателя, вторым электромотором и колесом. Электромотор может выводить приводную мощность к колесу или другому колесу, отличному от колеса.
[0109] Устройство для регулирования выхлопных газов может включать в себя сажевый фильтр. В транспортном средстве, включающем в себя такое устройство для регулирования выхлопных газов, большой объем кислорода может быть привнесен из цилиндра, в который подача топлива прекращается, в сажевый фильтр, температура которого была повышена вместе с температурой каталитического нейтрализатора, и твердые частицы, наросшие на сажевом фильтре, могут быть надежно сожжены. Таким образом, управление повышением температуры каталитического нейтрализатора этого изобретения является очень эффективным для регенерации сажевого фильтра в окружающей среде с низкой температурой, где большое количество твердых частиц имеет тенденцию нарастать на сажевом фильтре. Сажевый фильтр может быть расположен ниже по потоку от каталитического нейтрализатора и поддерживать каталитический нейтрализатор. Устройство для регулирования выхлопных газов может включать в себя расположенное выше по потоку регулирующее устройство, которое включает в себя каталитический нейтрализатор, и расположенное ниже по потоку регулирующее устройство, которое включает в себя, по меньшей мере, сажевый фильтр и располагается ниже по потоку от расположенного выше по потоку регулирующего устройства.
[0110] В способе управления гибридным транспортным средством этого изобретения гибридное транспортное средство включает в себя многоцилиндровый двигатель, устройство для регулирования выхлопных газов, включающее в себя каталитический нейтрализатор, который удаляет вредные компоненты выхлопных газов из многоцилиндрового двигателя, электромотор и устройство хранения электричества, которое обменивается электричеством с электромотором. По меньшей мере, один из многоцилиндрового двигателя и электромотора выводит приводную мощность к колесу. Способ управления гибридным транспортным средством включает в себя: по запросу повышения температуры каталитического нейтрализатора во время работы под нагрузкой многоцилиндрового двигателя выполнение управления повышением температуры каталитического нейтрализатора, которое включает прекращение подачи топлива в, по меньшей мере, один из цилиндров и обогащение соотношений воздух-топливо для других цилиндров, отличных, по меньшей мере, от первого цилиндра; и управление электромотором так, чтобы покрывать нехватку приводной мощности, получающуюся в результате выполнения управления повышением температуры каталитического нейтрализатора.
[0111] Во время работы под нагрузкой многоцилиндрового двигателя этот способ может в достаточной степени и быстро повышать температуру каталитического нейтрализатора устройства для регулирования выхлопных газов и подавать достаточный объем кислорода в устройство для регулирования выхлопных газов, в то же время избегая ухудшения дорожных качеств.
[0112] Следует понимать, что изобретение этого описания никоим образом не ограничивается вышеописанным вариантом осуществления, а может быть изменено различными способами в широких рамках изобретения. Вышеописанный вариант осуществления является просто одной конкретной формой изобретения, описанного в разделе "Сущность изобретения", и не предназначается, чтобы ограничивать элементы изобретения, описанного в этом разделе.
[0113] Изобретение из этого описания может быть применено к области производства гибридных транспортных средств и т.п.
название | год | авторы | номер документа |
---|---|---|---|
ТРАНСПОРТНОЕ СРЕДСТВО И СПОСОБ УПРАВЛЕНИЯ ТЕМПЕРАТУРОЙ КАТАЛИЗАТОРА ТРАНСПОРТНОГО СРЕДСТВА | 2020 |
|
RU2747342C1 |
СИСТЕМА СИЛОВОЙ ПЕРЕДАЧИ | 2020 |
|
RU2742307C1 |
УСТРОЙСТВО ВЫВОДА МОЩНОСТИ, АВТОМОБИЛЬ, ВКЛЮЧАЮЩИЙ В СЕБЯ УСТРОЙСТВО ВЫВОДА МОЩНОСТИ, И МОДУЛЬ И СПОСОБ УПРАВЛЕНИЯ ДЛЯ УСТРОЙСТВА ВЫВОДА МОЩНОСТИ | 2007 |
|
RU2372213C2 |
УСТРОЙСТВО УПРАВЛЕНИЯ ДЛЯ УСТРОЙСТВА ПЕРЕДАЧИ ДИНАМИЧЕСКОЙ МОЩНОСТИ | 2016 |
|
RU2625813C1 |
Устройство управления для транспортного средства с электрическим приводом | 2016 |
|
RU2655575C2 |
УСТРОЙСТВО УПРАВЛЕНИЯ ГЕНЕРИРОВАНИЕМ МОЩНОСТИ ДЛЯ ГИБРИДНОГО ТРАНСПОРТНОГО СРЕДСТВА | 2015 |
|
RU2670557C1 |
УСТРОЙСТВО УПРАВЛЕНИЯ И СПОСОБ УПРАВЛЕНИЯ ДЛЯ ТРАНСПОРТНОГО СРЕДСТВА С ГИБРИДНЫМ ПРИВОДОМ | 2013 |
|
RU2564162C1 |
УСТРОЙСТВО ПРИВЕДЕНИЯ В ДВИЖЕНИЕ ДЛЯ ГИБРИДНОГО ТРАНСПОРТНОГО СРЕДСТВА | 2012 |
|
RU2585501C2 |
УСТРОЙСТВО УПРАВЛЕНИЯ ГЕНЕРИРОВАНИЕМ МОЩНОСТИ ДЛЯ ГИБРИДНОГО ТРАНСПОРТНОГО СРЕДСТВА | 2015 |
|
RU2660326C1 |
УСТРОЙСТВО УПРАВЛЕНИЯ ТРОГАНИЕМ С МЕСТА ДЛЯ ГИБРИДНОГО ТРАНСПОРТНОГО СРЕДСТВА | 2015 |
|
RU2657587C1 |
Изобретение может быть использовано в гибридных транспортных средствах. Гибридное транспортное средство (1) содержит многоцилиндровый двигатель (10), устройство (18) для регулирования выхлопных газов, электромотор (MG2), устройство (40) хранения электричества и контроллер (70), (100), (55). Устройство (18) для регулирования выхлопных газов включает в себя каталитический нейтрализатор, выполненный с возможностью удаления вредных компонентов выхлопных газов из многоцилиндрового двигателя (10). Устройство (40) хранения электричества выполнено с возможностью обмена электричеством с электромотором (MG2). Контроллер (70), (100), (55) выполнен с возможностью выполнения управления повышением температуры каталитического нейтрализатора по запросу повышения температуры каталитического нейтрализатора во время работы под нагрузкой многоцилиндрового двигателя (10) в гибридном транспортном средстве (1). В гибридном транспортном средстве (1) многоцилиндровый двигатель (10) и/или электромотор (MG2) выполнен с возможностью вывода приводной мощности к колесу (W). Контроллер (70), (100), (55) выполнен с возможностью управления электромотором (MG2) таким образом, чтобы покрывать нехватку приводной мощности, получающуюся в результате выполнения управления повышением температуры каталитического нейтрализатора. Управление повышением температуры каталитического нейтрализатора является управлением, которое включает прекращение подачи топлива в, по меньшей мере, один из цилиндров многоцилиндрового двигателя (10) и обогащение соотношений воздух-топливо для других цилиндров, отличных от указанного, по меньшей мере, одного цилиндра. Раскрыт способ управления гибридным транспортным средством. Техничексий результат заключается в возможности повышать температуру каталитического нейтрализатора для регулирования выхлопных газов и подавать достаточный объем кислорода в устройство для регулирования выхлопных газов, в то же время избегая ухудшения дорожных качеств транспортного средства. 2 н. и 6 з.п. ф-лы, 12 ил.
1. Гибридное транспортное средство, содержащее:
многоцилиндровый двигатель;
устройство для регулирования выхлопных газов, включающее в себя каталитический нейтрализатор, выполненный с возможностью удаления вредных компонентов выхлопных газов из многоцилиндрового двигателя;
электромотор;
устройство хранения электричества, выполненное с возможностью обмена электричеством с электромотором; и
контроллер, выполненный с возможностью выполнения управления повышением температуры каталитического нейтрализатора по запросу повышения температуры каталитического нейтрализатора во время работы под нагрузкой многоцилиндрового двигателя в гибридном транспортном средстве, в котором многоцилиндровый двигатель и/или электромотор выполнен с возможностью вывода приводной мощности к колесу,
при этом контроллер выполнен с возможностью управления электромотором таким образом, чтобы покрывать нехватку приводной мощности, получающуюся в результате выполнения управления повышением температуры каталитического нейтрализатора,
причем управление повышением температуры каталитического нейтрализатора является управлением, которое включает прекращение подачи топлива в, по меньшей мере, один из цилиндров многоцилиндрового двигателя и обогащение соотношений воздух-топливо для других цилиндров, отличных от указанного, по меньшей мере, одного цилиндра.
2. Гибридное транспортное средство по п. 1, в котором контроллер выполнен с возможностью управления электромотором таким образом, чтобы покрывать нехватку приводной мощности, в то время как прекращается подача топлива в указанный, по меньшей мере, один цилиндр многоцилиндрового двигателя.
3. Гибридное транспортное средство по п. 1 или 2, в котором контроллер выполнен с возможностью задержки момента зажигания для других цилиндров, чтобы избегать увеличения в выходной мощности многоцилиндрового двигателя, получающегося в результате обогащения соотношений воздух-топливо для других цилиндров.
4. Гибридное транспортное средство по п. 1 или 2, дополнительно содержащее второй электромотор, выполненный с возможностью преобразования, по меньшей мере, части мощности от многоцилиндрового двигателя в электричество и обмена электричеством с устройством хранения электричества, при этом контроллер выполнен с возможностью управления вторым электромотором таким образом, чтобы преобразовывать избыточную мощность многоцилиндрового двигателя, получающуюся в результате обогащения соотношений воздух-топливо для других цилиндров, в электричество.
5. Гибридное транспортное средство по п. 4, в котором контроллер выполнен с возможностью задержки момента зажигания для других цилиндров, когда второй электромотор является неспособным преобразовывать избыточную мощность многоцилиндрового двигателя в электричество.
6. Гибридное транспортное средство по п. 4, дополнительно содержащее ведущий мост в блоке с коробкой передач, который соединен с выходным валом многоцилиндрового двигателя, вторым электромотором и колесом, при этом электромотор выполнен с возможностью вывода приводной мощности к колесу или другому колесу, отличному от указанного колеса.
7. Гибридное транспортное средство по п. 1 или 2, в котором устройство для регулирования выхлопных газов включает в себя сажевый фильтр.
8. Способ управления гибридным транспортным средством, включающим в себя многоцилиндровый двигатель, устройство для регулирования выхлопных газов, включающее в себя каталитический нейтрализатор, выполненный с возможностью удаления вредных компонентов выхлопных газов из многоцилиндрового двигателя; электромотор и устройство хранения электричества, выполненное с возможностью обмена электричеством с электромотором, причем многоцилиндровый двигатель и/или электромотор выполнен с возможностью вывода приводной мощности к колесу, при котором:
по запросу повышения температуры каталитического нейтрализатора во время работы под нагрузкой многоцилиндрового двигателя выполняют управление повышением температуры каталитического нейтрализатора, которое включает прекращение подачи топлива в, по меньшей мере, один из цилиндров и обогащение соотношений воздух-топливо для других цилиндров, отличных от указанного, по меньшей мере, одного цилиндра; и
управляют электромотором таким образом, чтобы покрывать нехватку приводной мощности, получающуюся в результате выполнения управления повышением температуры каталитического нейтрализатора.
Способ получения цианистых соединений | 1924 |
|
SU2018A1 |
JP 2004218541 A, 05.08.2004 | |||
JP 2011069281 A, 07.04.2011 | |||
УСТРОЙСТВО УПРАВЛЕНИЯ И СПОСОБ УПРАВЛЕНИЯ ДЛЯ ГИБРИДНОГО ТРАНСПОРТНОГО СРЕДСТВА | 2008 |
|
RU2408483C1 |
СПОСОБ УПРАВЛЕНИЯ СИЛОВОЙ УСТАНОВКОЙ ГИБРИДНОГО ТРАНСПОРТНОГО СРЕДСТВА (ВАРИАНТЫ) И СИЛОВАЯ УСТАНОВКА ГИБРИДНОГО ТРАНСПОРТНОГО СРЕДСТВА | 2014 |
|
RU2679755C2 |
Авторы
Даты
2021-01-26—Публикация
2020-09-30—Подача