СПОСОБ ЗАЩИТЫ ПОДВОДНОЙ ЛОДКИ ОТ ШИРОКОПОЛОСНОЙ МИНЫ-ТОРПЕДЫ Российский патент 2014 года по МПК G01S15/00 

Описание патента на изобретение RU2517782C2

Изобретение относится к вооружению подводных лодок, а именно к защите подводных лодок от торпед или мин, преимущественно от широкополосных мин-торпед.

Известен способ защиты подводной лодки от широкополосной мины-торпеды, содержащий обнаружение мины-торпеды, ее классификацию и уклонение от мины-торпеды путем изменения курса или производство реверса [Хвощ В.А. Тактика подводных лодок. - М.: Военное издательство. - 1989, с.152].

Обнаружение мины-торпеды и ее классификация используются и в заявляемом способе.

Причиной, препятствующей достижению в этом аналоге технического результата, обеспечиваемого изобретением, является низкая эффективность защиты подводной лодки, так как последняя, совершая маневр уклонения, в силу инерции попадает в зону поражения миной-торпедой, радиус поражения которой составляет 1000 метров. Войдя в эту зону, подводная лодка вызовет срабатывание мины, вследствие чего из стартового контейнера мины-торпеды выйдет торпеда, которая выполнит операцию наведения на уклоняющуюся подводную лодку и поразит ее [Кондратович А.А., Пиянзов Г.Г. Противоминное оружие. - М.: Военное издательство. - 1989, с.51 - 53; Янковский В. Минная война на море. - Зарубежное военное обозрение. - 1980. - №2. - с.72].

Известен также способ защиты надводных кораблей от торпед, содержащий обнаружение торпеды, ее классификацию, выработку данных стрельбы и производство выстрела для поражения цели глубинными бомбами из реактивной бомбовой установки РБУ-1 000 [Широкорад А.Б. Оружие отечественного флота 1945. - 2000. - М.: Изд-во Харвет. А.С.Т. 1945 - 2001. - С.570 - 576].

Обнаружение торпеды, ее классификация и выработка данных стрельбы используются и в заявляемом способе.

Причиной, препятствующей достижению в этом аналоге технического результата, обеспечиваемого изобретением, является относительно низкая эффективность его для защиты подводной лодки, потому что применяемые в этом способе реактивные снаряды имеют дальность хода под водой, недостаточную для покрытия ошибок в определении местонахождения торпеды.

Наиболее близким по технической сущности к заявляемому (прототипом) является способ защиты подводной лодки от широкополосной мины-торпеды, защищенный патентом РФ №2283793, кл. B63G 9/02, 2005. Он содержит обнаружение и определение угловых координат в режиме шумопеленгования торпеды, вышедшей из стартового контейнера и наводящейся на подводную лодку, ее классификацию, выработку данных стрельбы, производство выстрела устройства, несущего реактивные снаряды, с приходом устройства в расчетную точку на пути его движения пуск реактивных снарядов, эпицентры взрывов которых, равномерно, исключая образование непораженных участков, распределяются в объеме ограниченного водного пространства, сформированного вокруг предварительно рассчитанной точки встречи устройства и торпеды, путем постановки завес из силового поля взрывов реактивных снарядов на пути движения торпеды в телесном угле, обращенном вершиной к подводной лодке и ограниченном усеченной конической поверхностью с осью симметрии, совпадающей с направлением на источник шума, при этом середина оси симметрии совпадает с расчетной точкой встречи устройства с торпедой.

Все признаки способа-прототипа являются и признаками заявляемого способа.

Причиной, препятствующей достижению в способе-прототипе технического результата, обеспечиваемого изобретением, является сложность реализации способа, обусловленная тем, что ограниченное усеченной конической поверхностью водное пространство, в пределах которого осуществляют постановку завес из реактивных снарядов, имеет достаточно большие размеры, что требует большого количества реактивных снарядов, а также значительных габаритов устройства, несущего эти заряды.

Еще одной причиной, препятствующей достижению в способе-прототипе технического результата, обеспечиваемого изобретением, является относительно низкая вероятность поражения торпеды. Дело в том, что при определении области ограниченного водного пространства, в пределах которого осуществляется постановка завес из реактивных снарядов, оценка координат точки встречи устройства, несущего реактивные снаряды, с торпедой производится без учета того, что начальная скорость этого устройства (скорость при выстреле) может значительно отличаться от скорости хода. Поэтому фактическая точка встречи этого устройства с торпедой может значительно отличаться от расчетной, в результате чего торпеда окажется вне зоны поражения.

Технической задачей, на решение которой направлено изобретение, является упрощение реализации способа и повышение эффективности защиты подводной лодки.

Для достижения указанного технического результата в известном способе защиты подводной лодки от широкополосной мины-торпеды, содержащем обнаружение и определение угловых координат в режиме шумопеленгования торпеды, вышедшей из стартового контейнера и наводящейся на подводную лодку, ее классификацию, выработку данных стрельбы, производство выстрела устройства, несущего реактивные снаряды, с приходом устройства в расчетную точку на пути его движения пуск реактивных снарядов, эпицентры взрывов которых, равномерно, исключая образование непораженных участков, распределяются в объеме ограниченного водного пространства, сформированного вокруг предварительно рассчитанной точки встречи устройства и торпеды, путем постановки завес из силового поля взрывов реактивных снарядов на пути движения торпеды в телесном угле, обращенном вершиной к подводной лодке и ограниченном усеченной конической поверхностью с осью симметрии, совпадающей с направлением на источник шума, при этом середина оси симметрии совпадает с расчетной точкой встречи устройства с торпедой, определяют дистанцию от подводной лодки до торпеды методом активной гидролокации, при этом излучают зондирующий сигнал и принимают отраженный от торпеды (гидролокационный) сигнал с помощью узконаправленной антенны, акустическую ось которой устанавливают в направлении на торпеду, предварительно определенном методом шумопеленгования, а дистанцию DB от места выстреливания устройства-носителя реактивных снарядов до расчетной точки встречи с торпедой определяют по формулам:

τ = V У 0 V У V ˙ У ,

D B = V ˙ У τ 2 2 + [ D П ( t 3 + τ ) V T ] V У V У + V Т ,

где VУ0 - начальная скорость устройства-носителя реактивных снарядов;

VУ - скорость хода устройства-носителя реактивных снарядов;

V ˙ У - замедление устройства-носителя реактивных снарядов после выстреливания;

τ - время движения устройства-носителя реактивных снарядов на участке от места выстреливания до точки, в которой его скорость снижается до уровня VУ;

DП - дистанция от подводной лодки до торпеды в момент ее обнаружения и определения дальности методом активной гидролокации;

tЗ - время задержки от момента определения дальности торпеды на дистанции DП до выстреливания устройства-носителя реактивных снарядов;

VТ - скорость хода торпеды.

Отсутствуют какие-либо источники информации, в которых вновь введенные действия были описаны самостоятельно или в совокупности с остальными элементами заявляемого способа. Поэтому предлагаемый способ следует считать новым и имеющим изобретательский уровень.

Изобретение поясняется чертежом, на котором приведена схема защиты подводной лодки от торпеды.

Сущность предлагаемого способа защиты подводной лодки от мины-торпеды заключается в следующем.

На подводной лодке в режиме шумопеленгования по шумам, издаваемым винтами торпеды после выхода последней из стартового контейнера и начала наведения на подводную лодку, осуществляют оценку угловых координат торпеды - курсового угла и вертикального угла прихода шума. После определения этих углов на подводной лодке включают режим активной гидролокации. В этом режиме определяют только дистанцию DП от подводной лодки до торпеды. При этом для излучения зондирующего сигнала и для приема гидролокационного (отраженного от торпеды) сигнала используют одну и ту же узконаправленную антенну, акустическую ось которой устанавливают в направлении на торпеду, предварительно определенном в режиме шумопеленгования. Режим активной гидролокации можно использовать кратковременно, лишь на время определения дистанции DП. Кратковременное использование этого режима и узкая характеристика направленности антенны обеспечивают низкую вероятность обнаружения подводной лодки по излучению зондирующего сигнала.

После определения дальности DП с помощью бортовой информационной управляющей системы (БИУС) подводной лодки осуществляют расчет данных для стрельбы. Они содержат размеры и форму ограниченного водного пространства, в котором должна осуществляться постановка завес реактивных снарядов, количество этих снарядов, углы и моменты их пуска и т.д. Необходимые для расчета константы (например, скорости хода торпеды и устройства-носителя реактивных снарядов) содержатся в памяти БИУС.

На Фиг. показано взаимное расположение подводной лодки, торпеды, устройства-носителя реактивных снарядов, а также область ограниченного водного пространства, в пределах которого осуществляют постановку завес реактивных снарядов. Это пространство ограничено усеченной конической поверхностью и площадями завес - ближайшей к подводной лодке и наиболее удаленной от нее.

На Фиг. приняты следующие обозначения:

ПЛ - подводная лодка;

У - устройство-носитель реактивных снарядов;

Т - торпеда;

FI - площадь завесы, ближайшей к подводной лодке;

FСР - площадь завесы, поставленной в расчетной точке встречи устройства-носителя реактивных снарядов с торпедой;

FII - площадь завесы, наиболее удаленной от подводной лодки;

DР - дистанция от места выстреливания устройства-носителя реактивных снарядов (от подводной лодки) до расчетной точки начала постановки завес;

DB - дистанция от места выстреливания устройства-носителя реактивных снарядов до расчетной точки его встречи с торпедой;

SП - участок пути движения устройства-носителя реактивных снарядов с постановкой завес.

Расчет осуществляется в следующей последовательности.

1. Рассчитывают дистанцию DB по формулам:

τ = V У 0 V У V ˙ У ( 1 )

D B = V ˙ У τ 2 2 + [ D П ( t 3 + τ ) V T ] V У V У + V Т ( 2 )

где VУ0 - начальная скорость устройства-носителя реактивных снарядов;

VУ - скорость хода устройства-носителя реактивных снарядов;

V ˙ У - замедление устройства-носителя реактивных снарядов после выстреливания;

τ - время движения устройства-носителя реактивных снарядов на участке от места выстреливания до точки, в которой его скорость снижается до уровня VУ;

DП - дистанция от подводной лодки до торпеды в момент ее обнаружения и определения дальности методом активной гидролокации;

tЗ - время задержки от момента определения дальности торпеды на дистанции DП до выстреливания устройства-носителя реактивных снарядов;

VТ - скорость хода торпеды.

2. Рассчитывают длину участка пути SП по формуле:

S П = 6 σ D ( 3 )

где σD - средняя квадратичная ошибка в определении дальности DП методом активной гидролокации.

3. Рассчитывают дистанцию DP от подводной лодки до расчетной точки начала постановки завес реактивных снарядов по формуле:

D P = D B S П 2 ( 4 )

4. Рассчитывают площадь Fcp завесы в середине участка пути SП по формуле:

F C P = π [ B 2 + D B t g 3 α У П ] [ Ш 2 + D B t g 3 α К У ] ( 5 )

где В - высота проекции корпуса подводной лодки на вертикальную плоскость, перпендикулярную линии пути движения устройства-носителя реактивных снарядов;

Ш - ширина проекции корпуса подводной лодки на вертикальную плоскость, перпендикулярную линии пути движения устройства-носителя реактивных снарядов;

αУП - средняя квадратичная ошибка определения угла визирования торпеды с подводной лодки в вертикальной плоскости;

αКУ - средняя квадратичная ошибка определения курсового угла торпеды (угла визирования торпеды с подводной лодки) в горизонтальной

плоскости.

5. Рассчитывают необходимое число N снарядов в завесе площадью FCP в середине участка пути SП по формуле:

N = S П 2,4 F С Р Δ V ( 6 )

где ΔV - объем водного пространства, в котором обеспечивается поражение торпеды при взрыве одного реактивного снаряда в случае попадания торпеды в этот объем.

6. Рассчитывают промежуток ΔS участка SП пути, через который следует производить постановку завес реактивных снарядов, по формуле:

Δ S = 2 R V У V T + V У ( 7 )

где R - радиус поражения торпеды зарядом реактивного снаряда.

Аналогично пунктам 4 и 5 рассчитывают площадь завесы и необходимое в ней число реактивных снарядов для каждой из завес, планируемых к постановке на пути SП с интервалом ΔS.

Углы и моменты пуска реактивных снарядов определяются БИУС по специальной программе, обеспечивающей установление завес реактивных снарядов перпендикулярно линии движения устройства-носителя реактивных снарядов с интервалом ΔS, и таким образом, что эпицентры взрывов реактивных снарядов в каждой из завес распределены равномерно.

Устройство-носитель реактивных снарядов находится в торпедном аппарате подводной лодки полностью снаряженное и готовое к выстрелу.

По команде БИУС устройство выстреливается и направляется к торпеде, то есть к точке, определяемой ее дальностью и угловыми координатами в момент выстрела. С приходом устройства в расчетную точку начала участка SП оно осуществляет постановку завес реактивных снарядов перпендикулярно линии движения с интервалом ΔS между завесами и последующий взрыв этих снарядов.

Описанные действия обеспечивают достаточно высокую вероятность попадания торпеды в область водного пространства с установленными в нем завесами реактивных снарядов и поражение торпеды.

Предлагаемый способ достаточно легко реализуем. В качестве устройства-носителя реактивных снарядов может служить устройство, конструкция которого аналогична устройству, защищенному патентом РФ №2283793, то есть устройству, реализующему способ-прототип.

Из уравнений (1)÷(6) видно, что количество N реактивных снарядов, входящих в состав каждой из завес, в значительной степени определяется средней квадратичной ошибкой определения дальности DП (ошибкой σD). В заявляемом способе эта ошибка значительно меньше, чем в способе-прототипе. В формуле изобретения способа-прототипа определение дистанции DП торпеды не предусмотрено, так как там для определения ее координат используется только шумопеленгование, а оно само по себе не позволяет определить дальность до цели. В описании способа-прототипа предложено эту дальность определять триангуляционным методом. В принципе это возможно, но весьма проблематично, так как для этого нужно определить, как минимум, два разных пеленга на одну и ту же неподвижную или малоподвижную (в данном случае торпеду) цель из разных точек с известными координатами. В любом случае ошибка определения дальности этим методом будет значительно больше, чем ошибка σD определения дальности в заявляемом способе, где для этой цели применяется метод активной гидролокации. Это позволяет сделать вывод, что количество N реактивных снарядов, необходимое для обеспечения той же вероятности поражения торпеды в заявляемом способе, будет значительно меньше, чем в способе-прототипе. Это упрощает реализацию носителя этих зарядов и реализацию способа в целом.

В способе-прототипе расчет дистанции DB осуществляется без учета того, что начальная скорость VУ0 может значительно превышать скорость VУ хода. При этом расчет ведут по формуле:

D B = D П V У V T + V У t З V T

Это обстоятельство приводит к существенной ошибке в определении дистанции DB от места выстреливания устройства-носителя реактивных снарядов до расчетной точки его встречи с торпедой (до центра области водного пространства, предназначенного для постановки завес реактивных снарядов), что в свою очередь снижает вероятность попадания торпеды в зону поражения.

Примем для определенности: DП = 1000 м; VТ = VУ = 10 м/с; tЗ = 0; VУ0 = 50 м/с; V ˙ У = 10 м / с 2 .

В этих условиях для способа-прототипа получим:

D B = 1000 10 10 + 10 0 10 = 500 м

Фактическая же дистанция DB в соответствии с уравнениями (1) и (2) определится:

τ = 50 10 10 = 4 с . D B = 10 4 2 2 + [ 1000 ( 0 + 4 ) 10 ] 10 10 + 10 = 560 м .

Нетрудно видеть, что в способе-прототипе дистанция DB определяется с ошибкой порядка 60 м (она составляет 500 м вместо фактической 560 м). Это существенно снижает вероятность попадания торпеды в зону поражения.

В заявляемом способе за счет учета высокой начальной скорости и замедления устройства-носителя реактивных снарядов на начальном (стартовом) участке траектории эта ошибка отсутствует. Это обеспечивает попадание расчетной точки встречи этого устройства с торпедой в центр зоны поражения, что существенно повышает вероятность попадания торпеды в эту зону и в конечном итоге повышает эффективность защиты подводной лодки от торпеды.

Похожие патенты RU2517782C2

название год авторы номер документа
СПОСОБ ЗАЩИТЫ ПОДВОДНОЙ ЛОДКИ ОТ ШИРОКОПОЛОСНОЙ МИНЫ-ТОРПЕДЫ 2012
  • Федотов Александр Алексеевич
  • Дорух Игорь Георгиевич
  • Гармаш Владимир Федосеевич
RU2513880C2
СПОСОБ ЗАЩИТЫ ПОДВОДНОЙ ЛОДКИ ОТ ШИРОКОПОЛОСНОЙ МИНЫ-ТОРПЕДЫ 2011
  • Федотов Александр Алексеевич
  • Байлов Владимир Васильевич
  • Дорух Игорь Георгиевич
  • Крикотин Сергей Владимирович
  • Пивоваров Иван Иванович
RU2474512C2
СПОСОБ ЗАЩИТЫ ПОДВОДНОЙ ЛОДКИ ОТ ТОРПЕДЫ ШИРОКОПОЛОСНОЙ МИНЫ-ТОРПЕДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Литвиненко Евгений Яковлевич
  • Сидоренков Виктор Васильевич
RU2283793C1
СПОСОБ ЗАЩИТЫ ПОДВОДНОЙ ЛОДКИ ОТ ШИРОКОПОЛОСНОЙ МИНЫ-ТОРПЕДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Сидоренков В.В.
  • Абдулаев А.А.
RU2214942C2
Противоторпедное устройство подводной лодки 2020
  • Грук Алексей Федорович
  • Ковальчук Павел Петрович
RU2754162C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ДВИЖЕНИЯ ТОРПЕДЫ 2014
  • Хагабанов Сергей Михайлович
RU2568935C1
СПОСОБ ОСВЕЩЕНИЯ ПОДВОДНОЙ ОБСТАНОВКИ 2014
  • Хагабанов Сергей Михайлович
  • Шейнман Елена Львовна
  • Школьников Иосиф Соломонович
RU2555192C1
СПОСОБ ПОРАЖЕНИЯ МОРСКОЙ ЦЕЛИ 2017
  • Поленин Владимир Иванович
  • Новиков Александр Владимирович
  • Никитченко Сергей Николаевич
RU2692332C2
СПОСОБ ГИДРОАКУСТИЧЕСКОГО ОБЕСПЕЧЕНИЯ ПРОТИВОТОРПЕДНОЙ ЗАЩИТЫ СУДОВ 2015
  • Хагабанов Сергей Михайлович
RU2584355C1
Корабль освещения подводной обстановки 2022
  • Милкин Андрей Владимирович
  • Милкин Владимир Иванович
  • Шульженко Александр Евгеньевич
  • Давлетова Диана Александровна
RU2803404C1

Реферат патента 2014 года СПОСОБ ЗАЩИТЫ ПОДВОДНОЙ ЛОДКИ ОТ ШИРОКОПОЛОСНОЙ МИНЫ-ТОРПЕДЫ

Использование: изобретение относится к вооружению подводных лодок, а именно к защите подводных лодок от торпед или мин, преимущественно от широкополосных мин-торпед. Сущность: способ защиты подводной лодки от широкополосной мины-торпеды содержит обнаружение и определение угловых координат в режиме шумопеленгования торпеды, вышедшей из стартового контейнера и наводящейся на подводную лодку, ее классификацию, выработку данных стрельбы, производство выстрела устройства, несущего реактивные снаряды, с приходом устройства в расчетную точку на пути его движения пуск реактивных снарядов, эпицентры взрывов которых, равномерно, исключая образование непораженных участков, распределяются в объеме ограниченного водного пространства, сформированного вокруг предварительно рассчитанной точки встречи устройства и торпеды, путем постановки завес из силового поля взрывов реактивных снарядов на пути движения торпеды в телесном угле, обращенном вершиной к подводной лодке и ограниченном усеченной конической поверхностью с осью симметрии, совпадающей с направлением на источник шума, при этом середина оси симметрии совпадает с расчетной точкой встречи устройства с торпедой. Определяется дистанция от подводной лодки до торпеды методом активной гидролокации, при этом излучение зондирующего сигнала и прием отраженного от торпеды (гидролокационного) сигнала осуществляется с помощью узконаправленных антенн, акустические оси которых устанавливаются в направлении на торпеду, предварительно определенном методом шумопеленгования. Технический результат: упрощение реализации способа и повышение эффективности защиты подводной лодки.1 ил.

Формула изобретения RU 2 517 782 C2

Способ защиты подводной лодки от широкополосной мины-торпеды, содержащий обнаружение и определение угловых координат в режиме шумопеленгования торпеды, вышедшей из стартового контейнера и наводящейся на подводную лодку, ее классификацию, выработку данных стрельбы, производство выстрела устройства, несущего реактивные снаряды, с приходом устройства в расчетную точку на пути его движения пуск реактивных снарядов, эпицентры взрывов которых, равномерно, исключая образование непораженных участков, распределяются в объеме ограниченного водного пространства, сформированного вокруг предварительно рассчитанной точки встречи устройства и торпеды, путем постановки завес из силового поля взрывов реактивных снарядов на пути движения торпеды в телесном угле, обращенном вершиной к подводной лодке и ограниченном усеченной конической поверхностью с осью симметрии, совпадающей с направлением на источник шума, при этом середина оси симметрии совпадает с расчетной точкой встречи устройства с торпедой, отличающийся тем, что определяют дистанцию от подводной лодки до торпеды методом активной гидролокации, при этом излучают зондирующий сигнал и принимают отраженный от торпеды (гидролокационный) сигнал с помощью узконаправленной антенны, акустическую ось которой устанавливают в направлении на торпеду, предварительно определенном методом шумопеленгования, а дистанцию DB от места выстреливания устройства-носителя реактивных снарядов до расчетной точки встречи с торпедой определяют по формулам:
;
,
где VУ0 - начальная скорость устройства-носителя реактивных снарядов;
VУ - скорость хода устройства-носителя реактивных снарядов;
- замедление устройства-носителя реактивных снарядов после выстреливания;
τ - время движения устройства-носителя реактивных снарядов на участке от места выстреливания до точки, в которой его скорость снижается до уровня VУ;
DП - дистанция от подводной лодки до торпеды в момент ее обнаружения и определения дальности методом активной гидролокации;
tЗ - время задержки от момента определения дальности торпеды на дистанции DП до выстреливания устройства-носителя реактивных снарядов;
VT - скорость хода торпеды.

Документы, цитированные в отчете о поиске Патент 2014 года RU2517782C2

СПОСОБ ЗАЩИТЫ ПОДВОДНОЙ ЛОДКИ ОТ ТОРПЕДЫ ШИРОКОПОЛОСНОЙ МИНЫ-ТОРПЕДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2005
  • Литвиненко Евгений Яковлевич
  • Сидоренков Виктор Васильевич
RU2283793C1
СПОСОБ ЗАЩИТЫ ПОДВОДНОЙ ЛОДКИ ОТ ШИРОКОПОЛОСНОЙ МИНЫ-ТОРПЕДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Сидоренков В.В.
  • Абдулаев А.А.
RU2214942C2
СИСТЕМА ПОИСКА И ОБЕЗВРЕЖИВАНИЯ МИН 2001
  • Егоров В.В.
  • Каралюн В.Ю.
  • Поляков В.Н.
RU2184676C1
Устройство для регулирования натяжения наматываемой нити 1985
  • Щербаков Александр Павлович
SU1266823A1
Инструмент для выпрессовки и запрессовки подшипников карданных шарниров 1973
  • Караваев Борис Иосифович
  • Климова Людмила Владимировна
  • Соборнов Борис Геннадиевич
  • Тарасов Леонид Алексеевич
  • Беренфельд Аркадий Борисович
  • Хайрулин Александр Салахович
SU654401A2
Устройство для подачи сигнала о взрезе централизованной стрелки 1929
  • Татаров Л.Е.
SU22096A1
Приспособленке для расшлифовки и доводки цилиндрических поверхностей деталей, например, дизельной топливной аппаратуры 1955
  • Бородин В.П.
  • Бородин П.Л.
  • Бородин Ю.П.
SU115754A1

RU 2 517 782 C2

Авторы

Федотов Александр Алексеевич

Дорух Игорь Георгиевич

Даты

2014-05-27Публикация

2012-06-15Подача