Способ приема оптических сигналов Российский патент 2021 года по МПК G01S17/48 G01S7/486 

Описание патента на изобретение RU2750442C1

Предлагаемое изобретение относится к приему оптических сигналов, в частности, к технике приема сигналов с помощью лавинных фотодиодов, и может быть использовано в локации, связи и других фотоэлектронных областях.

Известен способ приема оптических сигналов с помощью лавинных фотодиодов [1]. Известны также способы стабилизации лавинного режима фотодиода, например, путем термокомпенсации рабочей точки напряжения смещения [2].

Наиболее близким к предлагаемому техническому решению является способ приема импульсных оптических сигналов с помощью лавинного фотодиода, напряжение смещения которого поддерживают путем стабилизации частоты шумовых импульсов, возникающих при пороговой обработке смеси сигнала и шума [3].

Недостатком этого способа является зависимость лавинного режима от выставленного порога срабатывания. Это приводит к неправильному выбору рабочей точки фотодиода и ухудшению реальной чувствительности [4].

Задачей изобретения является обеспечение чувствительности, близкой к предельно достижимой во всех эксплуатационных режимах.

Указанная задача решается за счет того, что в известном способе приема оптических сигналов с помощью лавинного фотодиода, включающем пороговое обнаружение сигналов и формирование выходных импульсов при превышении сигналом с выхода фотодиода заданного порога срабатывания, предварительно определяют значения умножаемого и неумножаемого шумового тока фотодиода и шум-фактор лавинного умножения, после чего коэффициент лавинного умножения Μ фотодиода устанавливают так, чтобы его величина с учетом допуска на регулировку была близка к оптимальному значению где Ι02 и JМ2 - соответственно квадраты составляющих неумножаемого и умножаемого шумового тока фотодиода в безлавинном режиме, приведенные к его выходу; α - коэффициент шумфактора, определяемый структурой фотодиода; при этом порог срабатывания порогового устройства регулируют так, чтобы частота f превышений порогового уровня выбросами шумового процесса находилась в пределах f1<f<f2, где f1 и f2 - нижняя и верхняя границы допуска на частоту f, а величину f=Ν/Τ определяют путем подсчета количества N выходных импульсов за предварительно заданное время Т.

На фиг. 1 представлена схема фотоприемного тракта, реализующего данный способ. На фиг. 2 показаны графики зависимости отношения сигнал/шум η(Μ) для германиевого (фиг. 2а) и кремниевого (фиг. 2б) лавинных фотодиодов.

Схема фиг. 1 содержит последовательно включенные лавинный фотодиод 1, усилитель 2 и пороговое устройство 3. Напряжение смещения подается на фотодиод 1 от последовательно включенных источника питания 4 и схемы компенсации 5. Пороговое устройство охвачено цепью обратной связи в виде блока шумовой автоматической регулировки порога 6, включенного между выходом порогового устройства и его управляющим входом. Схема компенсации связана с блоком установки лавинного режима 7. Синхронизация режима осуществляется блоком управления 8, связанным с блоками 6 и 7.

Способ осуществляется следующим образом.

Предварительно определяют ход параметров Ι0, Ι1, α выбранных лавинных фотодиодов в зависимости от температуры и зависимость величины коэффициента лавинного умножения Μ от напряжения смещения фотодиода Uсм. Этот подготовительный цикл осуществляют однократно на этапе проектирования.

При изготовлении и отладке фотоприемного устройства с учетом ранее определенных зависимостей настраивают, например, по методике [2] блок установки лавинного режима так, чтобы во всех условиях эксплуатации коэффициент лавинного умножения с учетом допуска на регулировку был близок к своему оптимальному значению.

После выхода фотодиода на номинальный лавинный режим непосредственно перед приемом сигналов включают шумовую автоматическую регулировку порога, осуществляемую блоком 6, например, по методике, изложенной в [5]. После выхода шумовой регулировки порога на рабочий режим, включают режим приема сигналов.

Описанный способ обеспечивает максимальное отношение сигнал/шум во всех условиях эксплуатации и при различных уровнях первоначально выставленного порога срабатывания.

Оптимальное значение коэффициента лавинного умножения Μ можно определить следующим образом. На выходе лавинного фотодиода действует эквивалентный квадрат шумового тока [4]

Ι02 - квадрат неумножаемого шумового тока

е - заряд электрона;

Ι1тф - первичный обратный ток фотодиода;

Iт - первичный (не умноженный) темновой ток фотодиода;

Iф - первичный фототок фона;

Δf - полоса пропускания линейного тракта до входа порогового устройства;

М- коэффициент лавинного умножения;

Мα - шум-фактор лавинного умножения;

α - коэффициент, определяемый конструкцией фотодиода [4].

Квадрат W отношения шум/сигнал, приведенного к Μ

JM2=2eI1Δƒ.

Условие нуля производной

Или

Пример 1 (Фиг. 2а).

Германиевый фотодиод. I1=10-7 A. JM2=3,2⋅10-19 Α2. α=1. Рабочую точку фотодиода поддерживают при Μ=1,8…3,5. При этом максимальное отношение сигнал/шум, обеспечиваемое способом, то есть величина отличается от максимального значения при Μ=Мопт=3, не более, чем на 2%.

Пример 2 (Фиг. 2б).

Кремниевый фотодиод. 11=10-9 A. JM2=3,2⋅10-21 Α2. α=0,5. Рабочую точку фотодиода поддерживают при Μ=25…35. При этом максимальное отношение сигнал/шум, обеспечиваемое способом, отличается от максимального значения при Μ=Μопт=28, не более, чем на 2%.

Таким образом, обеспечивается реальная чувствительность, близкая к предельно достижимой во всех эксплуатационных режимах.

Источники информации

1. Росс М. Лазерные приемники. - «Мир», М, 1969 г. - 520 с.

2. Патент РФ №2248670. Устройство включения лавинного фотодиода в приемнике оптического излучения. 2005 г.

3. US pat. 4,077,718. Receiver for optical radar. 1978. - прототип.

4. Вильнер В.Г., Лейченко Ю.А., Мотенко Б.Н. Анализ входной цепи фотоприемного устройства с лавинным фотодиодом и противошумовой коррекцией. Оптико-механическая промышленность, 1981, №9, - С. 59.

5. Вильнер В.Г. Проектирование пороговых устройств с шумовой стабилизацией порога. - Оптико-механическая промышленность, 1984, №5, с. 39-41.

Похожие патенты RU2750442C1

название год авторы номер документа
Способ порогового приема оптических сигналов 2020
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
RU2756384C1
Способ порогового обнаружения оптических сигналов 2021
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
RU2778629C1
Способ обнаружения оптических сигналов с помощью лавинного фотодиода 2023
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
  • Турикова Галина Владимировна
RU2815330C1
Способ приема импульсных оптических сигналов 2020
  • Вильнер Валерий Григорьевич
  • Васильева Любовь Владимировна
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Мамин Алексей Владимирович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
  • Турикова Галина Владимировна
RU2750444C1
Способ стабилизации режима лавинного фотодиода 2021
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
RU2778976C1
Способ обнаружения оптических сигналов 2020
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
RU2755601C1
Способ порогового обнаружения оптических сигналов 2023
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
  • Шишкина Ирина Александровна
RU2797660C1
Лазерный импульсный дальномер 2022
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
RU2791186C1
Способ обнаружения импульсных оптических сигналов 2023
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Ковалева Татьяна Евгеньевна
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
  • Шишкина Ирина Александровна
RU2810708C1
Способ стабилизации лавинного режима фотодиода 2021
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
RU2778045C1

Иллюстрации к изобретению RU 2 750 442 C1

Реферат патента 2021 года Способ приема оптических сигналов

Изобретение относится к технике выделения сигналов из шума с помощью лавинных фотодиодов и может быть использовано в областях, где требуется обеспечение максимального отношения сигнал/шум. Способ приема оптических сигналов с помощью лавинного фотодиода включает пороговую обработку сигналов и формирование выходных импульсов при превышении сигналом с выхода фотодиода заданного порога срабатывания, предварительно определяют значения умножаемого и неумножаемого шумовых токов фотодиода и шум-фактор лавинного умножения, после чего коэффициент лавинного умножения Μ фотодиода устанавливают так, чтобы его величина с учетом допуска на регулировку была близка к оптимальному значению где Ι02 и Jм2 - соответственно квадраты составляющих неумножаемого и умножаемого шумовых токов фотодиода в безлавинном режиме, приведенные к его выходу; α - коэффициент шум-фактора, определяемый структурой фотодиода, при этом порог срабатывания порогового устройства регулируют так, чтобы частота f превышений порогового уровня выбросами шумового процесса находилась в пределах f1<f<f2, где f1 и f2 - нижняя и верхняя границы допуска на частоту f, а величину f=Ν/Τ определяют путем подсчета количества N выходных импульсов за предварительно заданное время Т. Изобретение обеспечивает максимальные отношения сигнал/шум во всех условиях эксплуатации. 2 ил.

Формула изобретения RU 2 750 442 C1

Способ приема оптических сигналов с помощью лавинного фотодиода, включающий пороговую обработку сигналов и формирование выходных импульсов при превышении сигналом с выхода фотодиода заданного порога срабатывания, отличающийся тем, что предварительно определяют значения умножаемого и неумножаемого шумовых токов фотодиода и шум-фактор лавинного умножения, после чего коэффициент лавинного умножения Μ фотодиода устанавливают так, чтобы его величина с учетом допуска на регулировку была близка к оптимальному значению где I02 и JМ2 - соответственно квадраты составляющих неумножаемого и умножаемого шумовых токов фотодиода в безлавинном режиме, приведенные к его выходу; α - коэффициент шум-фактора, определяемый структурой фотодиода; при этом порог срабатывания порогового устройства регулируют так, чтобы частота f превышений порогового уровня выбросами шумового процесса находилась в пределах f1<f<f2, где f1 и f2 - нижняя и верхняя границы допуска на частоту f, а величину f=Ν/Τ определяют путем подсчета количества N выходных импульсов за предварительно заданное время Т.

Документы, цитированные в отчете о поиске Патент 2021 года RU2750442C1

US 4077718 A, 07.03.1978
СПОСОБ И УСТРОЙСТВО ДЛЯ ОБНАРУЖЕНИЯ ОТНОШЕНИЯ ОПТИЧЕСКОГО СИГНАЛА К ШУМУ, УЗЛОВОЕ УСТРОЙСТВО И СЕТЕВАЯ СИСТЕМА 2012
  • Вэй Ицзя
  • Ни Цзюань
  • Фэн Чжиюн
  • Дэн Нин
RU2590889C2
СПОСОБ ПОЛУЧЕНИЯ ИНФОРМАЦИИ О ВХОДНОМ ОПТИЧЕСКОМ СИГНАЛЕ, ОСНОВАННЫЙ НА ПРЕОБРАЗОВАНИИ МОДЕЛИРОВАННЫХ ОПТИЧЕСКИХ СИГНАЛОВ С ПОМОЩЬЮ ГЕТЕРОДИННОГО ФОТОПРИЕМНОГО УСТРОЙСТВА, И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2015
  • Бузоверя Владимир Васильевич
RU2593429C1
US 20180341020 A1, 29.11.2018
US 20190064323 A1, 28.02.2019.

RU 2 750 442 C1

Авторы

Вильнер Валерий Григорьевич

Васильева Любовь Владимировна

Землянов Михаил Михайлович

Кузнецов Евгений Викторович

Мамин Алексей Владимирович

Сафутин Александр Ефремович

Седова Надежда Валентиновна

Турикова Галина Владимировна

Даты

2021-06-28Публикация

2020-11-26Подача