Способ обнаружения оптических сигналов Российский патент 2021 года по МПК G01R19/175 G01J1/04 H01L31/107 

Описание патента на изобретение RU2755601C1

Предлагаемое изобретение относится к приему оптических сигналов, в частности, к технике приема сигналов с помощью лавинных фотодиодов, и может быть использовано в локации, связи и других фотоэлектронных областях.

Известен способ приема оптических сигналов с помощью лавинных фотодиодов [1]. Известны также способы стабилизации лавинного режима фотодиода, например, путем термокомпенсации рабочей точки напряжения смещения [2].

Наиболее близким к предлагаемому техническому решению является способ приема импульсных оптических сигналов с помощью лавинного фотодиода, напряжение смещения которого поддерживают путем стабилизации частоты шумовых импульсов, возникающих при пороговой обработке смеси сигнала и шума [3].

Недостатком этого способа является зависимость лавинного режима от выставленного порога срабатывания. Это приводит к неправильному выбору рабочей точки фотодиода и ухудшению пороговой чувствительности [4].

Задачей изобретения является обеспечение оптимальной чувствительности во всех условиях эксплуатации при гарантированной вероятности ложных срабатываний..

Указанная задача решается за счет того, что в известном способе обнаружения оптических сигналов с помощью лавинного фотодиода, включающем пороговую обработку сигналов и формирование выходных импульсов при превышении сигналом с выхода фотодиода заданного порога срабатывания, предварительно определяют частоту f0 пересечения шумом нулевого порога, включают безлавинный режим смещения фотодиода, устанавливают порог срабатывания U на уровне, соответствующем частоте шумовых срабатываний порогового устройства 1/Т << f << f0, где Т - время измерения частоты f, фиксируют этот порог, определяют квадрат отношения порог/шум по формуле , после чего, управляя напряжением смещения лавинного фотодиода, устанавливают на нем такой коэффициент лавинного умножения М, при котором частота шумовых превышений порога , где α - параметр, характеризующий коэффициент шума фотодиода, затем фиксируют напряжение смещения на этом уровне и устанавливают порог срабатывания, при котором частота fpaб шумовых срабатываний соответствует требованиям в рабочем режиме, после чего приступают к приему сигналов.

Частоту fpaб можно устанавливать путем автоматической шумовой стабилизации порога после установления коэффициента лавинного умножения.

Допуск на установку частот fM может быть до 2 раз от выставляемого параметра в большую и меньшую сторону.

На фиг. 1 представлена структурная схема приемника, реализующего способ. На фиг. 2 показан пример зависимости отношения сигнал/шум от коэффициента лавинного умножения. На фиг. 3 - пример зависимости fМ от f; α=0,5.

Приемник фиг. 1 по предлагаемому способу содержит лавинный фотодиод 1, выход которого через согласующий усилитель 2 подключен ко входу порогового формирователя импульсов 3. Выход последнего связан со входами датчиков частоты 4 и 5. Датчик 4 подключен к источнику смещения фотодиода 6, а датчик 5 - к управляющему входу порогового формирователя 3. Источник смещения 6 и пороговый формирователь 3 подключены к блоку управления 7.

Способ осуществляется следующим образом.

Предварительно (на этапе проектирования) устанавливают частоту f0, определяемую полосой пропускания приемного тракта 1, 2 до входа порогового формирователя 3.

Перед приемом сигналов включают подготовительный режим, в течение которого устанавливают оптимальные параметры приемного тракта - коэффициент лавинного умножения фотодиода и порог срабатывания порогового устройства. С этой целью в первой фазе подготовительного режима с помощью блока управления устанавливают на источнике смещения 6 низкий уровень напряжения смещения, соответствующий коэффициенту лавинного умножения М=1. Одновременно устанавливают порог срабатывания U формирователя 3 так, чтобы частота f шумовых превышений порога была значительно ниже предельной частоты f0. Это необходимо для обеспечения широкого диапазона регулировки параметров приемника. Вместе с тем, частота шумовых срабатываний должна быть достаточно высокой, чтобы оценка частоты за период усреднения Т была достоверной. Этому требованию отвечает условие равносильное f>>1/Т и означающее малое влияние среднеквадратического разброса оценки на ее среднее значение fT. Например, при f0=107 Гц и времени усреднения Т=0,1 с этим условиям отвечает частота f в диапазоне от 103 до 105 Гц. По достижении порога U определяют квадрат отношения порог/шум по формуле . Если f0 и f выбираются заранее, величина является постоянным паспортным параметром, определяемым на стадии проектирования. После этого во второй фазе подготовительного режима с помощью блока управления 7 включают замкнутый контур регулировки лавинного режима 1-2-3-4-6-1, путем изменения напряжения смещения фотодиода таким образом, чтобы частота шумовых превышений порога приняла значение fM, соответствующее оптимальному коэффициенту лавинного умножения Мопт. В таком режиме обеспечивается максимальное отношение сигнал/шум. Частота также определяется предварительно по известным параметрам f0, и α. После выхода на установившийся режим частоты fM блоком управления 7 фиксируют напряжение смещения фотодиода на соответствующем уровне и переходят в рабочий режим приема оптических сигналов. Для этого переключают порог срабатывания на такой уровень, при котором частота шумовых срабатываний соответствует заданным техническим требованиям.

Известно [5-7], что в безлавинном режиме (М=1) квадрат среднеквадратического значения шума а на выходе фотодиода

где σ0 и σ1 - соответственно среднеквадратические значения неумножаемой (σ0) и умножаемой (σ1) составляющих шума.

Частота f пересечений порога U шумовыми выбросами в безлавинном режиме [7]

где - частота пересечения шумом нулевого порога; R(τ) - корреляционная функция шума на входе порогового устройства [8]. Зная частоты f и f0 из (2) можно определить отношение порог/шум

В лавинном режиме [4]

где α - параметр шум-фактора лавинного умножения F=Мα, определяемый материалом и структурой фотодиода [4-6].

Квадрат отношения сигнал/шум

Обратная η2 величина (квадрат отношения шум/сигнал)

Производная этой величины

Минимум отношения шум/сигнал обеспечивается при dW/dM=0.

Условие (8) выполняется при

Частота шумовых превышений порога в лавинном режиме

)

Подстановка (9) в (10 дает выражение частоты шумовых превышений порога при М=Мопт. С учетом всегда имеющего место условия σ02 >> σ12 (в противном случае режим лавинного умножения невозможен)

Из (2) и (11) следует отношение частот f(M=Mопт) и f(M=1).

Как следует из (12) при постоянных параметрах α, определяемом конструкцией фотодиода, и U/σ, задаваемом частотой f, отношение f(Mопт)/f полностью определяется этими параметрами и также является постоянным параметром способа. В свою очередь, частота f(Mопт). соответствует оптимальной величине коэффициента лавинного умножения, обеспечивающего максимальное отношение сигнал/шум. Это методическое постоянство упрощает процедуру настройки как в процессе отладки приемника, так и в его рабочем режиме.

Из этого следует также, что частота f может быть любой в самом широком диапазоне при выполнении условий

и

Допуск на частоту f(Mопт) также достаточно широк.

Пример 1.

Зависимость отношения сигнал/шум от коэффициента лавинного умножения.

01)2=900; (U/σ)2=20; α=0,5 (Si лавинный фотодиод); f0=107 Гц.

В соответствии с (2) f=454 Гц.

При этих данных с помощью (6) вычислена зависимость η(М), график которой приведен на фиг 2.

Мопт=26,46. Максимум квадрата отношения сигнал/шум в относительных единицах равен 140.

Однопроцентное ухудшение отношения сигнал шум соответствует относительному уровню 137. На фиг. 2 пунктиром показаны границы допустимого диапазона М=22-33, отвечающие этому уровню.

Влияние неточности фиксации частоты fM на коэффициент лавинного умножения может быть установлено из (10).

Пример 2

В условиях примера 1 σ12=0,0011 σ02. Тогда

Допустимый разброс частот f(M) согласно (15) составляет

f(Mопт)=1332 кГц (номинальная частота).

f(M=22)=573 кГц.

f(M=33)=2812 кГц.

Столь широкий допуск с большим запасом обеспечивает 99 процентов от теоретически предельного отношения сигнал/шум.

Пример 3 Влияние разброса частоты f на номинальную величину fM.

01)2=100; (U/σ)2=18,4; α=0,5; f0=107 Гц; f=850…1250 Гц.

Зависимость fM(f) носит линейный характер (фиг. 3), что обеспечивает простоту реализации способа. Для данного примера М=Мопт ~ 20 во всем диапазоне частот.

Таким образом, описанный способ решает поставленную задачу обеспечения оптимальной чувствительности во всех условиях эксплуатации при гарантированной вероятности ложных срабатываний.

Источники информации

1. Росс М. Лазерные приемники. - М.: Мир., 1969. - 520 с.

2. Патент РФ №2 248670. Устройство включения лавинного фотодиода в приемнике оптического излучения. 2005 г.

3. US pat. 4,077,718. Receiver for optical radar. 1978. - прототип.

4. Вильнер В.Г., Лейченко Ю.А., Мотенко Б.Н. Анализ входной цепи фотоприемного устройства с лавинным фотодиодом и противошумовой коррекцией. Оптико-механическая промышленность, 1981, №9, - С. 59.

5. Анисимова И.Д. и др. Полупроводниковые фотоприемники: Ультрафиолетовый, видимый и ближний инфракрасный диапазоны спектра. Под ред. В.И. Стафеева. - М.: Радио и связь, 1984. - 216 с.

6. Филачев А.М., Таубкин И.И., Тришенков М.А. Твердотельная фотоэлектроника. Фотодиоды. - М: Физматкнига, 2011. - 448 с.

7. Вильнер В.Г. Проектирование пороговых устройств с шумовой стабилизацией порога. - Оптико-механическая промышленность, 1984, №5, С. 39-41.

8. Тихонов В.И. Выбросы случайных процессов. Главн. ред. физ.-матем. лит., 1970, - С. 392.

Похожие патенты RU2755601C1

название год авторы номер документа
Способ порогового обнаружения оптических сигналов 2020
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
RU2755602C1
Способ порогового обнаружения оптических сигналов 2023
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
  • Шишкина Ирина Александровна
RU2797660C1
Способ обнаружения импульсных оптических сигналов 2023
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Ковалева Татьяна Евгеньевна
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
  • Шишкина Ирина Александровна
RU2810708C1
Способ некогерентного накопления импульсных светолокационных сигналов 2022
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
RU2791151C1
Способ порогового приема оптических сигналов 2020
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
RU2756384C1
Способ приема оптических сигналов с помощью лавинного фотодиода 2023
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
  • Шишкина Ирина Александровна
RU2819303C1
Способ импульсного локационного измерения дальности 2022
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Короннов Алексей Алексеевич
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
  • Шишкина Ирина Александровна
RU2792086C1
Способ обнаружения оптических сигналов с помощью лавинного фотодиода 2023
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
  • Турикова Галина Владимировна
RU2815330C1
Способ приема оптических сигналов 2020
  • Вильнер Валерий Григорьевич
  • Васильева Любовь Владимировна
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Мамин Алексей Владимирович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
  • Турикова Галина Владимировна
RU2750442C1
Способ порогового обнаружения оптических сигналов 2021
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Сафутин Александр Ефремович
  • Седова Надежда Валентиновна
RU2778629C1

Иллюстрации к изобретению RU 2 755 601 C1

Реферат патента 2021 года Способ обнаружения оптических сигналов

Изобретение относится к приему сигналов, в частности к технике выделения сигналов из шума с помощью лавинных фотодиодов. Технический результат изобретения заключается в обеспечении максимального отношения сигнал/шум во всех условиях эксплуатации. Изобретение представляет способ обнаружения оптических сигналов с помощью лавинного фотодиода, включающий пороговую обработку сигналов и формирование выходных импульсов при превышении сигналом с выхода фотодиода заданного порога срабатывания, предварительно определяют частоту f0 пересечения шумом нулевого порога, включают безлавинный режим смещения фотодиода, устанавливают порог срабатывания U на уровне, соответствующем частоте шумовых срабатываний порогового устройства 1/Т << f << f0, где Т - время измерения частоты f, фиксируют этот порог, определяют квадрат отношения порог/шум по формуле, после чего, управляя напряжением смещения лавинного фотодиода, фиксируют напряжение смещения на этом уровне и устанавливают порог срабатывания, при котором частота fpaб шумовых срабатываний соответствует требованиям в рабочем режиме, после чего приступают к приему сигналов. 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 755 601 C1

1. Способ обнаружения оптических сигналов с помощью лавинного фотодиода, включающий пороговую обработку сигналов и формирование выходных импульсов при превышении сигналом с выхода фотодиода заданного порога срабатывания, отличающийся тем, что предварительно определяют частоту f0 пересечения шумом нулевого порога, включают безлавинный режим смещения фотодиода, устанавливают порог срабатывания U на уровне, соответствующем частоте шумовых срабатываний порогового устройства 1/Т << f << f0, где Т - время измерения частоты f, фиксируют этот порог, определяют квадрат отношения порог/шум по формуле , после чего, управляя напряжением смещения лавинного фотодиода, устанавливают на нем такой коэффициент лавинного умножения М, при котором частота шумовых превышений порога , где α - параметр, характеризующий коэффициент шума фотодиода, затем фиксируют напряжение смещения на этом уровне и устанавливают порог срабатывания, при котором частота fpaб шумовых срабатываний соответствует требованиям в рабочем режиме, после чего приступают к приему сигналов.

2. Способ по п. 1, отличающийся тем, что частоту fpaб устанавливают путем автоматической шумовой стабилизации порога после установки коэффициента лавинного умножения.

3. Способ по п. 1, отличающийся тем, что допуск на установку частоты fM составляет до 2 раз от выставляемого параметра в большую и меньшую сторону.

Документы, цитированные в отчете о поиске Патент 2021 года RU2755601C1

US 4077718 A, 07.03.1978
СПОСОБ ИЗГОТОВЛЕНИЯ ЛЕНТЫ ДЛЯ МЕТАЛЛИЗАЦИИ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ 0
SU165106A1
Оптический приемник 2018
  • Антонова Наталья Болеславовна
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Мамин Алексей Владимирович
  • Романова Екатерина Васильевна
  • Сафутин Александр Ефремович
RU2686386C1
Приемник оптических импульсов 2018
  • Вильнер Валерий Григорьевич
  • Землянов Михаил Михайлович
  • Кузнецов Евгений Викторович
  • Мамин Алексей Владимирович
  • Сафутин Александр Ефремович
RU2688906C1
WO 1997047048 A1, 11.12.1997.

RU 2 755 601 C1

Авторы

Вильнер Валерий Григорьевич

Землянов Михаил Михайлович

Кузнецов Евгений Викторович

Сафутин Александр Ефремович

Даты

2021-09-17Публикация

2020-11-26Подача