Изобретение относится к области техники, а более конкретно - к способу использования акустико-эмиссионного сбора данных в целях мониторинга и прогнозирования состояния строительных и технологических конструкций.
Настоящее изобретение может найти применение при создании, эксплуатации, управлении и мониторинге строительных и технологических конструкций различного назначения, включая конструкции, используемые в промышленности, энергетике, машиностроении, коммунальном хозяйстве и других отраслях.
В основу настоящего изобретения положена задача создания такого способа использования акустико-эмиссионного сбора данных в целях мониторинга и прогнозирования состояния строительных и технологических конструкций, который позволил бы предсказывать наступление критических событий, в первую очередь, связанных с внутренними неисправностями и сбоями, либо критическим ростом каких-либо значений показателей, описывающих строительные или технологические конструкции и связанных с появлением сигналов акустической эмиссии от внутренних дефектов.
Согласно ГОСТ 27655-88, Акустическая эмиссия (Эмиссия волн напряжений, Звуковая эмиссия, Ультразвуковая эмиссия, Акустическое излучение) - испускание объектом контроля (испытаний) акустических волн.
Наиболее близким к данному изобретению является патент RU 2371691C1 СПОСОБ МОНИТОРИНГА МАШИН И СООРУЖЕНИЙ (2008.04.22), включающий измерение посредством, по крайней мере, одного датчика параметров вибрации объекта, определение и анализ значений параметров вибрации объекта мониторинга в месте установки датчика, отличающийся тем, что используют датчик, синфазно измеряющий три ортогональных проекции вектора ускорения, определяют вектор деформации объекта мониторинга в месте установки датчика, накапливают массив векторных величин деформации, отображают на мониторе, по крайней мере, для одной частоты вибрации годограф вектора деформации относительно системы координат, связанной с объектом мониторинга, и определяют наличие анизотропии в деформациях элемента объекта мониторинга в месте установки датчика.
Однако рассмотренный прототип имеет следующие существенные недостатки:
- не является универсальным для различных типов строительных и технологических конструкций;
- зависит от процессов вибрации и не учитывает появление акустической эмиссии при возникновении внутренних дефектов строительных и технологических конструкций;
- не позволяет классифицировать процессы наступления критических событий по интенсивности и характеру сигналов;
- не предназначен для прогнозирования наступления событий, связанных с образованием дефектов, в будущем времени.
Задачи изобретения решены и недостатки прототипа устранены в реализованном согласно настоящему изобретению способе мониторинга и прогнозирования состояния строительных и технологических конструкций, предусматривающий следующие стадии:
1) на поверхности конструкции прикрепляют по меньшей мере два датчика, улавливающих сигналы акустической эмиссии, получаемые от динамически развивающихся дефектов в конструкции;
2) акустические сигналы от датчиков, полученные на первой стадии, сохраняют;
3) по разнице времени приема сходных акустических сигналов от датчиков определяют местонахождение дефекта, а по характеру акустического сигнала определяют тип дефекта;
и отличающийся тем, что сохраненные акустические сигналы разделяют по меньшей мере на четыре группы:
- пассивный источник, характеризующийся монотонным уменьшением активности, амплитуды и/или энергии сигнала во времени и насыщением параметров акустической эмиссии,
- активный источник, характеризующийся квазипостоянными значениями активности, амплитуды и/или энергии во времени и линейной зависимостью от времени параметров акустической эмиссии;
- критически активный источник, характеризующийся постоянным приростом значений активности, амплитуды и/или энергии во времени и отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии;
- закритически активный источник, характеризующийся дальнейшим существенным увеличением значений активности, амплитуды и/или энергии во времени и существенным отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии.
4) полученные данные используются для мониторинга конструкций, причем для первых двух групп источников устанавливается режим наблюдения, а для двух следующих - режим оповещения о появлении и местоположении критических и/или закритически активных источников, при этом контролируется переход первых двух групп источников в последующие две группы.
5) данные первых трех групп используют для прогнозирования состояния строительных и технологических конструкций в будущем времени.
За счет реализации заявленного авторами способа достигаются следующие технические результаты:
- он является универсальным для различных типов строительных и технологических конструкций;
- не зависит от процессов вибрации и учитывает появление акустической эмиссии при возникновении внутренних дефектов строительных и технологических конструкций;
- позволяет классифицировать процессы наступления критических событий по интенсивности и характеру сигналов;
- предназначен для прогнозирования наступления событий, связанных с образованием дефектов, в будущем времени.
Настоящее изобретение будет раскрыто в нижеследующем описании мониторинга и предсказания состояния водонапорной башни, имеющей емкость для хранения воды и электромеханический турбинный насос для ее нагнетания в емкость.
На поверхности водонапорной башни прикрепляют по меньшей мере два датчика, улавливающих сигналы акустической эмиссии, получаемые от динамически развивающихся дефектов как в строительных конструкциях водонапорной башни, так и в насосе. Акустические сигналы от датчиков, полученные на первой стадии, сохраняют.
По разнице времени приема сходных акустических сигналов от датчиков определяют местонахождение дефекта, а по характеру акустического сигнала определяют тип дефекта;
С течением времени фиксируют пассивный источник, характеризующийся монотонным уменьшением активности, амплитуды и/или энергии сигнала во времени и насыщением параметров акустической эмиссии, связанный с протечкой воды из бака, а также активный источник, характеризующийся квазипостоянными значениями активности, амплитуды и/или энергии во времени и линейной зависимостью от времени параметров акустической эмиссии, связанный с проседанием конструкции бака и образованием трещин в его стенках.
Кроме того, фиксируют - критически активный источник, характеризующийся постоянным приростом значений активности, амплитуды и/или энергии во времени и отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии, связанный с износом подшипников насоса,
В некоторый момент времени фиксируют закритически активный источник, характеризующийся дальнейшим существенным увеличением значений активности, амплитуды и/или энергии во времени и существенным отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии, связанный с разрушением подающего шланга насоса.
Полученные данные используются для мониторинга конструкций, причем для первых двух групп источников устанавливается режим наблюдения, а для двух следующих - режим оповещения о появлении и местоположении критических и/или закритически активных источников, при этом контролируется переход первых двух групп источников в последующие две группы. Так, при разрушении шланга производится немедленное оповещение коммунальных служб.
Данные первых трех групп используют для прогнозирования состояния строительных и технологических конструкций в будущем времени, в частности, прогнозируется время текущего ремонта протечки из бака, заделка трещин и смена подшипников.
По сравнению со способами известными авторам, заявляемый способ обладает высокой универсальностью и гибкостью и позволяет достичь лучших результатов, является универсальным для различных типов строительных и технологических конструкций, не зависит от процессов вибрации и учитывает появление акустической эмиссии при возникновении внутренних дефектов строительных и технологических конструкций, позволяет классифицировать процессы наступления критических событий по интенсивности и характеру сигналов, удобен для прогнозирования наступления событий, связанных с образованием дефектов, в будущем времени.
Литература
1. Математическая энциклопедия. - М.: Советская энциклопедия. И.М. Виноградов. 1977-1985.
2. М.Г. Сухарев Методы прогнозирования - Серия Прикладная математика в инженерном деле М: 2009.
3. ГОСТ 27655-88 ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР. АКУСТИЧЕСКАЯ ЭМИССИЯ. Термины, определения и обозначения. - УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 28.03.88 №787.
Использование: для мониторинга и прогнозирования состояния строительных и технологических конструкций посредством акустико-эмиссионного сбора данных. Сущность изобретения заключается в том, что на поверхности конструкции прикрепляют по меньшей мере два датчика, улавливающих сигналы акустической эмиссии, получаемые от динамически развивающихся дефектов в конструкции; акустические сигналы от датчиков, полученные на первой стадии, сохраняют; по разнице времени приема сходных акустических сигналов от датчиков определяют местонахождение дефекта, а по характеру акустического сигнала определяют тип дефекта; сохраненные акустические сигналы разделяют по меньшей мере на четыре группы: пассивный источник, характеризующийся монотонным уменьшением активности, амплитуды и/или энергии сигнала во времени и насыщением параметров акустической эмиссии; активный источник, характеризующийся квазипостоянными значениями активности, амплитуды и/или энергии во времени и линейной зависимостью от времени параметров акустической эмиссии; критически активный источник, характеризующийся постоянным приростом значений активности, амплитуды и/или энергии во времени и отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии; закритически активный источник, характеризующийся дальнейшим существенным увеличением значений активности, амплитуды и/или энергии во времени и существенным отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии; полученные данные используются для мониторинга конструкций, причем для первых двух групп источников устанавливается режим наблюдения, а для двух следующих - режим оповещения о появлении и местоположении критических и/или закритически активных источников, при этом контролируется переход первых двух групп источников в последующие две группы; данные первых трех групп используют для прогнозирования состояния строительных и технологических конструкций в будущем времени. Технический результат: обеспечение возможности предсказывать наступление критических событий, связанных с внутренними неисправностями строительных или технологических конструкций.
1. Способ использования акустико-эмиссионного сбора данных в целях мониторинга и прогнозирования состояния строительных и технологических конструкций:
1) на поверхности конструкции прикрепляют по меньшей мере два датчика, улавливающих сигналы акустической эмиссии, получаемые от динамически развивающихся дефектов в конструкции;
2) акустические сигналы от датчиков, полученные на первой стадии, сохраняют;
3) по разнице времени приема сходных акустических сигналов от датчиков определяют местонахождение дефекта, а по характеру акустического сигнала определяют тип дефекта;
отличающийся тем, что сохраненные акустические сигналы разделяют по меньшей мере на четыре группы:
- пассивный источник, характеризующийся монотонным уменьшением активности, амплитуды и/или энергии сигнала во времени и насыщением параметров акустической эмиссии,
- активный источник, характеризующийся квазипостоянными значениями активности, амплитуды и/или энергии во времени и линейной зависимостью от времени параметров акустической эмиссии;
- критически активный источник, характеризующийся постоянным приростом значений активности, амплитуды и/или энергии во времени и отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии;
- закритически активный источник, характеризующийся дальнейшим существенным увеличением значений активности, амплитуды и/или энергии во времени и существенным отклонением от линейной временной зависимости в сторону увеличения значений параметров акустической эмиссии;
4) полученные данные используются для мониторинга конструкций, причем для первых двух групп источников устанавливается режим наблюдения, а для двух следующих - режим оповещения о появлении и местоположении критических и/или закритически активных источников, при этом контролируется переход первых двух групп источников в последующие две группы;
5) данные первых трех групп используют для прогнозирования состояния строительных и технологических конструкций в будущем времени.
СПОСОБ МОНИТОРИНГА МАШИН И СООРУЖЕНИЙ | 2008 |
|
RU2371691C1 |
RU 2011152257 A, 27.06.2013 | |||
Shiotani, Tomoki; Luo, Xiu; Haya, Hiroshi, Damage diagnosis of railway concrete structures by means of one-dimensional AE sources, Journal of Acoustic Emission, January 1, 2006 | |||
СПОСОБ АКУСТИКО-ЭМИССИОННОГО КОНТРОЛЯ | 2011 |
|
RU2480742C1 |
CN 107271564 A, 20.10.2017 | |||
US 2011185814 A1, 04.08.2011. |
Авторы
Даты
2021-06-29—Публикация
2020-03-10—Подача