СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ Российский патент 2021 года по МПК B21B3/00 

Описание патента на изобретение RU2751067C2

Изобретение относится к способам обработки титановых сплавов давлением, содержащих алюминий, ванадий, и может быть использовано при изготовлении проволоки из (α+β)-титанового сплава методом горячего деформирования (волочения или прокатки), используемой для аддитивной технологии.

Изобретение направлено на увеличение производительности, на снижение потерь готовой продукции, снижение затрат энергии на температурную обработку сплава и улучшение таких показателей при изготовлении проволоки для аддитивной технологии из (α+β)-титанового сплава как прочность и пластичность и исключение обрывы проволоки в процессе изготовления.

Титановый сплав (α+β)-класса, пригодный для применения в качестве проволоки для аддитивной технологии, представляет собой сплав Ti-Al-V, который номинально содержит мас. %: алюминий 5,50-6,76, ванадий 3,50-4,40, менее 0,20 мас. % кислорода, титан остальное Сплав используется для изготовления крупногабаритных сварных и сборных конструкций летательных аппаратов, для изготовления баллонов, работающих под внутренним давлением в широком интервале температур от -196°С до 450°С, и целого ряда других конструктивных элементов в авиакосмической промышленности. Для изготовления данных изделий с использованием аддитивной технологии, требуется проволока, имеющая повышенные свойства по однородности микроструктуры, фазовому составу, с минимальной анизотропией механических свойств по всей длине и без наличия сварных соединений и других дефектов.

Известен способ изготовления проволоки из α-титановых сплавов путем нагрева заготовки и прокатки в несколько проходов со скоростью в первом проходе не более 2 м/с, отличающийся тем, что, с целью увеличения производительности, нагрев производят до температуры, определяемой из зависимости Т=[(450-470)-20 V1]°С, где V1 - скорость прокатки в первом проходе, а деформацию осуществляют в многовалковых калибрах с суммарной степенью 75-80%. (Патент RU №1476718, заявка 4292778/02 от 03.08.1987 г, МПК В21В 3/00).

Недостатком этого способа являются то, что в данной разработке использована многократная термообработка, получаемые при этом механические свойства проволоки не позволяют получить, из одной заготовки, провод без сварных соединений необходимой длины.

Известен способ получения проволоки из (α+β)-титановых сплавов, включающий нагрев, деформацию и отжиг (Волочение легких сплавов. Ерманок М.З., Ватрушин Л.С. М.: ВИЛС, 1999, с. 95-108).

Недостатком этого способа являются применение много переходной операции деформации, осуществляемой с нагревом, и применение энергоемких операций травления и вакуумного отжига, следствием которого является низкий уровень значений характеристик предела прочности на разрыв, что не позволяет, из одной заготовки, получение проволоки из титанового сплава ВТ6 с повышенными механическими свойствами одним куском необходимой длины для аддитивной технологии.

Известен способ изготовления высокопрочной проволоки из титана и титановых сплавов, включающий получение слитка, его горячую деформацию с получением заготовки для волочения, волочение при комнатной температуре на конечный размер и окончательную термическую обработку (US 6077369 А, C22F 1/18, 20.06.2000).

Недостатком этого способа является окисление и трещинообразование поверхности, формирование структурной неоднородности по длине проволоки и как следствие разброс и нестабильность механических свойств проволоки, что не позволяет получение структурированной проволоки из титанового сплава ВТ6 с повышенными механическими свойствами одним куском необходимой длины для аддитивной технологии.

Известен способ изготовления высокопрочной проволоки из (α+β)-титанового сплава мартенситного класса, включающий получение слитка, его горячую деформацию с получением заготовки для волочения, волочение при комнатной температуре на конечный размер и окончательную термическую обработку, при этом после горячей деформации полученные заготовки отжигают на воздухе и механически обрабатывают, волочение проводят многократно с промежуточными отжигами в атмосфере воздуха, при этом, после первого хода волочения проводят механическую обработку, а окончательную термическую обработку ведут в атмосфере воздуха в течение 60-180 мин при температуре (0,5÷0,7)Тпп °C с дальнейшим охлаждением до комнатной температуры. (Патент RU №2460825, заявка 2011140698 от 07.10.2011 г, МПК В21В 3/00).

Недостатками этого способа являются многостадийность и длительность процесса обработки заготовки и низкие механические свойства сплава по сравнению с предлагаемым способом. Данный способ не позволяет получить структурированную проволоку из титанового сплава ВТ6 с повышенными механическими свойствами одним куском необходимой длины для аддитивной технологии.

Наиболее близким техническим решением для описываемого ниже способа является способ изготовления проволоки из (α+β) - титановых сплавов, включающий нагрев заготовки и деформацию в несколько проходов, при этом в процессе деформации осуществляют охлаждение, причем при степени суммарной деформации до 50% охлаждение осуществляют до температуры деформации 640-670°С, при степени суммарной деформации более 50%, но менее 80% охлаждение осуществляют до температуры деформации более 670°С, но менее 700°С. (Патент RU №1520717, заявка 4309001 от 21.09.1987, МПК В21В 1/00).

Недостатком данного способа являются то, что механические свойства титанового сплава, полученные указанной обработкой, ниже, чем в предлагаемом способе, что не позволяет получение, из одной заготовки, структурированной проволоки из титанового сплава ВТ6 с повышенными механическими свойствами одним куском без обрыва, необходимой длины для аддитивной технологии.

Задачей данного изобретения является повышение качества проволоки из (α+β)-титанового сплава для аддитивной технологии, снижение затрат на ее изготовление.

Технический результат, достигаемый в процессе решения задачи, заключается в снижении продолжительности полного цикла производства проволоки, в получении проволоки единым куском без сварных соединений, повышение прочности и пластичности титановой проволоки из (α+β)-титанового сплава, получение однородной, мелкозернистой структуры сплава, снижение анизотропии механических свойств по длине и сечению проволоки.

Технический результат достигается способом изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий включающим нагрев заготовки и деформацию заготовки путем волочения или прокатки в несколько проходов, отличающийся тем, что деформацию заготовки проводят при температуре Тз=(450-850)°С, при скорости деформации (25-100) м/мин и степени деформации μ=(10-50)% за один проход, где - μ=(d2i-d2(i+1))/d2i×100, di и d(i+1) - диаметры проволоки до и после деформации на i-том проходе, а нагрев заготовок до этой температуры проводят индукционным методом с использованием одной, двух или трех установок индукционного нагрева,, при этом заготовки диаметром от 7,5 до 4,16 мм нагревают посредством трех установок, включающих установку с номинальной мощностью N=(50-80) кВт и частотой f=(40-80) кГц, установку с номинальной мощностью N=(30-60) кВт и частотой f=(80-300) кГц и установку с номинальной мощностью N=(10-40) кВт и частотой f=(300-500) кГц, заготовки диаметром от менее 4,16 мм до 2,39 мм нагревают посредством двух установок, включающих установку с номинальной N=(30-60) кВт и частотой f=(80-300) кГц, и установку с номинальной мощностью N=(10-40) кВт и частотой f=(300-500) кГц, а заготовки диаметром от менее 2,39 мм до 1,84 мм нагревают посредством одной установки с номинальной мощностью N=(10-40) кВт и частотой f=(300-500) кГц.

Кроме этого, изготавливают проволоку из титанового сплава, содержащего, мас. %: алюминий 5,50-6,76, ванадий 3,50-4,40, железо ≤0,22, углерод ≤0,05, кислород 0,14-0,18, азот ≤0,03, водород ≤0,015, титан - остальное.содержание по массе %: алюминий 5,50-6,76, ванадий 3,50-4,40, железо ≤0,22, углерод ≤0,05, кислород 0,14-0,18, азот ≤0,03, водород ≤0,015 и титан - остальное, проволока имеет допуск на диаметр -0,05/+0,01 мм, проволока имеет остаточное напряжение, определенное по отклонению от прямолинейности, на образцах, отобранных в начале и конце проволоки, и составляющее не более 1,0 мм при изгибе по радиусу 150 мм.

Снижение продолжительности полного цикла производства проволоки, при получении проволоки единым куском без сварных соединений, повышение прочности и пластичности титановой проволоки из (α+β)-титанового сплава, при однородной, мелкозернистой структуре сплава, малой анизотропии механических свойств по длине и сечению проволоки, определяются условиями нагрева заготовки, температурой нагрева и степенью деформации проволоки. Повышение прочности и пластичности титановой проволоки из (α+β)-титанового сплава, это свойства титанового сплава, которые необходимо получить в процессе изготовления проволоки, чтобы иметь возможность изготовить проволоку, из одной заготовки, одним куском без сварных соединений. Для сплавов титана характерно значительное увеличение сопротивления пластической деформации и потеря пластичности на начальных стадиях деформирования. Прочность и пластичность титановой проволоки из (α+β)-титанового сплава, в большей степени определяется температурой нагрева заготовки и скоростью пластической деформации. Особенно это проявляется при деформации α+β-титановых сплавов, имеющих повышенное содержание легирующих элементов, что способствует дополнительному упрочнению материала. Повышенное содержание алюминия в титане, особенно при значениях более 5,5%, увеличивает прочностные характеристики и снижает пластичность в условиях температур ниже 450°С. Увеличение температуры нагрева заготовки свыше 850°С, приводит к снижению прочности поволоки после деформации, что не позволяет сократить число проходов, при получении проволоки необходимого диаметра. В данном способе предлагается проводить нагрев заготовки индукционным способом используя одну или две или три установки с номинальной мощностью N1=(50-80) кВт и частотой f1=(40-80) кГц, номинальной мощностью N2=(30-60) кВт и частотой f2=(80-300) кГц, номинальной мощностью N3=(10-40) кВт и частотой f3=(300-500) кГц. При индукционном нагреве проволоки из титанового сплава имеются трудности формирования равномерного температурного поля по глубине заготовки. Это обусловлено особенностями протекания высокочастотного тока по проводнику, низкой теплопроводностью титана, высоким уровнем тепловых потерь. Из-за скин-эффекта при индукционном нагреве тепловые источники распределены по сечению заготовки неравномерно: максимальное тепловыделение происходит на поверхности, с увеличением расстояния от поверхности интенсивность источников теплоты падает. Соответственно поверхностные слои имеют более высокую температуру, чем середина, причем эта разность температур тем больше, чем больше мощность, на которой осуществляется нагрев, и чем выше частота тока. По мере разогрева заготовки происходит рост тепловых потерь в окружающую среду. Расширение металла и фазовые (структурные) превращения распространяются с поверхности внутрь нагреваемой заготовки в течение определенного времени. Со стороны наружных расширяющихся слоев внутренние, непрогретые, слои, испытывают напряжения растяжения, а наружные со стороны внутренних - напряжения сжатия. Чтобы снизить полный цикл производства проволоки необходимо сократить число проходов, что ведет к увеличению степени деформации Увеличение степени деформации до 50% возможно за один проход при быстром нагреве заготовки до температур (450-850)°С и равномерном распределения температуры по сечению. Предлагается нагрев заготовки производить одним или двумя, или тремя индукторами. Важным здесь является фактор распределения температурного поля по сечению провода. При высокой степени деформации, однородность температурного поля по сечению проволоки должна быть максимально равномерной.

При нагреве заготовки несколькими индукторами, существенно увеличивается скорость ее нагрева, возрастает равномерность распределения температуры заготовки по сечению, что обеспечивает получение однородной, мелкозернистой структуры сплава, снижение анизотропии механических свойств по длине и сечению проволоки. Высокая степень пластической деформации заготовки на каждом проходе является эффективным средством формирования структуры металлов, определяющей важнейшие структурно-чувствительные свойства, такие как пластичность и прочность. Существующие традиционные процессы деформации заготовок при производстве проволоки, такие как прокатка, волочение, при малой степени деформации, не обеспечивают эффективного решения структурообразования, что обусловлено следующим: степень деформации заготовки за один проход составляют до 12%, параметры напряженного и деформированного состояний в этих процессах характеризуются значительной неоднородностью их распределения, определяемой контактным трением, материал обладает низкой пластичностью. Увеличение степени пластического деформирования, за один проход до 50% позволяет реализовать возможности пластической деформации как одного из наиболее эффективных средств формирования структуры, при изготовлении проволоки из (α+β)-титановых сплавов для аддитивных технологий. Предлагаемый способ интенсивной пластической деформации титанового сплава, позволяет получать заготовки проволоки с различной мелкой зернистой структурой до нескольких микрон, с формированием нового состояния материала с высокими физико-механическими свойствами.

Для получения титановой проволоки необходимого качества, удовлетворяющей аддитивной технологии, имеющей минимальную анизотропию механических свойств и фазового состава по сечению и по длине, авторами предлагаемого технического решения проведены работы по отработке режимов нагрева проволоки индукционным способом с использованием при нагреве заготовки одного или двух, или трех индукторов при высокой степени деформации до 50%.

При индукционном нагреве одной установкой номинальной мощностью N1=(50-80) кВт и частотой f1=(40-80) кГц, разность температур внутренних и внешних слоев металла приводит к локальным изменениям в структуре титана, а также к возникновению остаточных напряжений и образованию микротрещин на поверхности на начальных стадиях деформации, в дальнейшем с уменьшением диаметра не схлопнувшиеся микротрещины приводят к порыву проволоки. Использование трех индукторов нагрева, на максимальных диаметрах заготовки, имеющих различные мощности и частоты, позволяют снизить градиент температур по сечению заготовки. При индукционном нагреве проволоки из титанового сплава тепло поверхностного слоя идет на нагрев внутренних слоев. При дополнительном нагреве поверхностного слоя индуктором с N3=(10-40) кВт и частотой f3=(300-500) кГц, образование мельчайших микротрещин, которые выходят на поверхность, не происходит. Итак, тепловая энергия поверхностного слоя, полученная на индукционных установках имеющих меньшую частоту переменного магнитного поля, и ушедшая на разогрев внутренних слоев компенсируется дополнительным нагревом поверхностного слоя установками индукционного нагрева имеющих большую частоту, при этом практически исчезает градиент распределения температур на значительную толщину проволоки.

Нагрев заготовки индукционным способом из титановых сплавов и проведение деформации при температуре Тз=(450-850)°С, используя одну или две или три установки с номинальной мощностью N1=(50-80) кВт и частотой f1=(40-80) кГц, номинальной мощностью N2=(30-60) кВт и частотой f2=(80-300) кГц, номинальной мощностью N3=(10-40) кВт и частотой f3=(300-500) кГц, при степени деформации заготовки μ=(10-50)% за один проход, где - μ=(d2i-d2(i+1))/d2i×100, di и d(i+1) - диаметры проволоки до и после деформации на i-том проходе позволяет:

- формировать предельно равномерное температурное поле по длине и по сечению заготовки,

- избежать недогрева заготовки,

- достигнуть необходимой пластичности,

- избежать появление деформационных микро разрывов,

- исключить перегрев заготовки и увеличение зернистости и неоднородности структуры,

- повысить качество проволоки,

- добиться высокой точности и скорости управления температурным нагревом заготовки.

Экспериментально, в зависимости от диаметра заготовки проволоки, определены мощности и частоты нагрева заготовок из титана и количество одновременно используемых индукторов нагрева и предельные значения температуры деформации заготовки. Необходимо отметить, что в зависимости от конкретных требований к качеству проволоки по микроструктуре, количество одновременно используемых индукторов нагрева представленные в таблице 1 могут меняться.

Контроль температуры при нагреве заготовки проводится пирометрами на каждом индукторе с точностью измерения температуры 0,1°С.

Реализация способа.

Реализация способа проводилась в три этапа. На первом этапе изготавливались заготовки для прокатки или волочения, на втором этапе проводилось изготовление проволоки волочением или прокаткой, на третьем этапе проводилось исследование образцов проволоки. Ниже представлена часть вариантов реализации предлагаемого способа изготовления проволоки из (α+β)-титанового сплава для аддитивной технологии с индукционным нагревом. Все заготовки были изготовлены из одного слитка.

Этап изготовление заготовки.

Методом тройного вакуумного дугового переплава получали слиток из титанового сплава ВТ6 диаметром 450 мм; далее обтачивали до 420 мм; нагревали до температуры 850°С в газовой печи и ковали на диаметр 115 мм. Полученную заготовку обтачивали для удаления альфированного слоя, затем нагревали до температуры 900°С и проводили горячую прокатку в бухту на диаметр 8,0 мм. Далее проводили отжиг на воздухе при температуре 700°С в течении 2-х часов с охлаждением на воздухе.

Этап проведение исследований.

Проводились следующие виды исследования поволоки. Определялись механические свойства, исследовалась структура сплава. Исследования механических свойств проводились на проволоке, вырезанной из конца бухты, или из конца проволоки в месте обрыва. Полученная проволока подвергалась растяжению на разрывной машине INSTRON 5969. Длина образца проволоки для растяжения составляла 600 мм. Скорость растяжения проволоки составляла 10 мм/мин. Основные механические характеристики проволоки представлены в табл. 2. Остаточное напряжение определялось на образцах, отобранных в начале и конце проволоки. Образец длиной 950 мм изгибался по радиусу 150 мм, после этого измерялась прямолинейность проволоки в соответствии с ГОСТ 26877-2008. Исследование структуры (α+β)-титанового сплава проводили на образцах проволоки полученных после проведения всего цикла получения готового провода и пригодного для аддитивной технологии. На фиг. 1 представлена характерная структура сплава ВТ6 полученная на проволоке, изготовленной на оптимальных режимах (Пример 1.), на фиг. 2 представлена структура сплава ВТ6 полученная на проволоке которая порвалась (Пример 3.). Изображение получено на растровом электронном микроскопе модели MIRA3 TESCAN, напряжение 15 кВ, увеличение 5kx., α - фаза титанового сплава темные области, β-фаза - светлые области. Результаты исследований представлены в табл. 2

Этап изготовления проволоки.

Пример 1. Деформацию заготовки с диаметра 7,5 мм до диаметра 1,84 мм проводили за 5 проходов. Нагрев заготовки проводился до температуры 650°С. Деформацию проводили волочением, нагрев заготовки проводили одним или двумя, или тремя индукторами, на режимах, которые не выходили за предельные значения (табл. 1). Нагрев заготовок диаметром от 7,5 до 4,16 мм проводили тремя индукторами с номинальной мощностью N1=60 кВт и частотой f1=66 кГц, с номинальной мощностью N2=45 кВт и частотой f2=100 кГц, номинальной мощностью N3=35 кВт и частотой f3=440 кГц. Нагрев заготовок диаметром от менее 4,16 мм до 2,39 мм проводили двумя индукторами с номинальной мощность N2=45 кВт и частотой f2=100 кГц, с номинальной мощностью N3=35 кВт и частотой f3=440 кГц. Нагрев заготовок диаметром от менее 2,39 мм до 1,84 мм проводили на одной установке с номинальной мощностью N3=35 кВт и частотой f3=440 кГц для заготовок. Степень деформации заготовки принимали μ=(40-45)%. Скорость деформации (V) заготовки выбирали на каждом проходе, в зависимости от диаметра (d) заготовки:

V = 40 м/мин для диаметра d=(от 7,5 до 5,56) мм, μ=45%.

V = 50 м/мин для диаметра d=(от менее 5,56 до 4,16) мм, μ=44%.

V = 55 м/мин для диаметра d=(от менее 4,16 до 3,14) мм, μ=43%.

V = 60 м/мин для диаметра d=(от менее 3,14 до 2,39) мм, μ=42%.

V = 70 м/мин для диаметра d=(от менее 2,39 до 1,84) мм, μ=40%.

Результаты испытаний проволоки представлены в (табл. 2).

Пример 2. Деформация заготовки на диаметре 3,14 мм проводилась при температуре нагрева заготовки 430°С, что ниже оптимальной на 20°С Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки на начальной стадии прохода. Концы проволоки были сварены, температура нагрева заготовки была повышена в область оптимальных температур до 470°С. В дальнейшем при проходах при данной температуре обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).

Пример 3. Деформация заготовки на диаметр 2,39 мм проводилась при температура нагрева заготовки 865°С, что выше оптимальной на 15°С. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки на начальной стадии прохода. Концы проволоки были сварены, температура нагрева заготовки была снижена в область оптимальных температур до 830°С. В дальнейшем при проходах при данной температуре обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).

Пример 4. Деформация проволоки на диаметре 5,56 мм. проводилась при мощности индукционного нагревателя N1=45 кВт, что меньше оптимальной на 5 кВт. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в середине прохода, концы проволоки были сварены. Мощность N1 была увеличена до оптимальных значений. N1=55 кВт В дальнейшем при проходах при данных параметрах мощности N1 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).

Пример 5. Деформация проволоки на диаметре 5,56 мм проводилась при мощности индукционного нагревателя N1=85 кВт, что выше оптимальной на 5 кВт. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в начале прохода, концы проволоки были сварены. Мощность N1 была уменьшена до оптимальных значений. N1=75 кВт В дальнейшем при проходах при данных параметрах мощности N1 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).

Пример 6. Деформация проволоки на диаметр 5,56 мм проводилась на частоте индукционного нагревателя f1=90 кГц, что выше оптимальной на 10 кГц Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в вначале прохода, концы проволоки были сварены. Частота индукционного тока f1 была уменьшена до оптимальных значений f1=75 кГц. В дальнейшем при проходах при данных параметрах частоты тока f1 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).

Пример 7. Деформация проволоки на диаметр 5,56 мм проводилась на частоте индукционного нагревателя f1=30 кГц, что ниже оптимальной на 10 кГц Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в вначале прохода, концы проволоки были сварены. Частота индукционного тока f1 была увеличена до оптимальных значений f1=45 кГц. В дальнейшем при проходах при данных параметрах частоты тока f1 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).

Пример 8. Деформация проволоки на диаметре 4,16 мм проводилась при мощности индукционного нагревателя N2=25 кВт, что меньше оптимальной на 5 кВт. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в середине прохода, концы проволоки были сварены. Мощность N2 была увеличена до оптимальных значений. N2=35 кВт. В дальнейшем при проходах при данных параметрах мощности N2 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).

Пример 9. Деформация проволоки на диаметре 4,16 мм проводилась при мощности индукционного нагревателя N2=65 кВт, что выше оптимальной на 5 кВт. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в начале прохода, концы проволоки были сварены. Мощность N2 была уменьшена до оптимальных значений. N2=55 кВт. В дальнейшем при проходах при данных параметрах мощности N2 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).

Пример 10. Деформация проволоки на диаметр 4,16 мм проводилась на частоте индукционного нагревателя f2=70 кГц, что ниже оптимальной на 10 кГц Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в вначале прохода, концы проволоки были сварены. Частота индукционного тока 12 была увеличена до оптимальных значений f2=85 кГц. В дальнейшем при проходах при данных параметрах частоты тока f2 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).

Пример 11. Деформация проволоки на диаметр 4,16 мм проводилась на частоте индукционного нагревателя f2=310 кГц, что выше оптимальной на 10 кГц Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в вначале прохода, концы проволоки были сварены. Частота индукционного тока f2 была уменьшена до оптимальных значений f2=290 кГц. В дальнейшем при проходах при данных параметрах частоты тока f2 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).

Пример 12. Деформация проволоки на диаметре 2,39 мм проводилась при мощности индукционного нагревателя N3=8 кВт, что меньше оптимальной на 2 кВт. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в середине прохода, концы проволоки были сварены. Мощность N3 была увеличена до оптимальных значений. N3=12 кВт. В дальнейшем при проходах при данных параметрах мощности N3 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).

Пример 13. Деформация проволоки на диаметре 2,39 мм проводилась при мощности индукционного нагревателя N3=45 кВт, что выше оптимальной на 5 кВт. Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в начале прохода, концы проволоки были сварены. Мощность N3 была уменьшена до оптимальных значений. N3=35 кВт. В дальнейшем при проходах при данных параметрах мощности N3 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).

Пример 14. Деформация проволоки на диаметр 2,39 мм проводилась на частоте индукционного нагревателя f3=510 кГц, что выше оптимальной на 10 кГц Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в вначале прохода, концы проволоки были сварены. Частота индукционного тока f3 была уменьшена до оптимальных значений f3=490 кГц. В дальнейшем при проходах при данных параметрах частоты тока 13 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).

Пример 15. Деформация проволоки на диаметр 2,39 мм проводилась на частоте индукционного нагревателя f3=290 кГц, что ниже оптимальной на 10 кГц Остальные параметры процесса изготовления проволоки были оптимальными, как в примере 1. Произошел обрыв проволоки в вначале прохода, концы проволоки были сварены. Частота индукционного тока f3 была увеличена до оптимальных значений f3=310 кГц. В дальнейшем при проходах при данных параметрах частоты тока 13 обрывов проволоки не было. Результаты испытаний проволоки представлены в (табл. 2).

Пример 16. Деформацию заготовки с диаметра 7,5 мм до диаметра 1,84 мм проводили за 5 температурных проходов. Нагрев заготовки проводился до температуры 650°С. Деформацию проводили волочением, нагрев заготовки проводили одним или двумя или тремя индукторами, на режимах, которые не выходили за предельные значения (табл. 1), на установках с номинальной мощностью N1=60 кВт и частотой f1=66 кГц, с номинальной мощностью N2=45 кВт и частотой f2=100 кГц, номинальной мощностью N3=35 кВт и частотой f2=440 кГц для заготовок диаметром от 7,5 до 4,16 мм, на установках с N2=45 кВт и f2=100 кГц, N3=35 кВт и f2=440 кГц для заготовок диаметром от менее 4,16 мм до 2,39 мм, на установке с N3=35 кВт и f2=440 кГц для заготовок диаметром от менее 2,39 мм до 1,84 мм. Степень деформации заготовки на первом проходе принимали μ=52%, μ=(d2i-d2(i+1)×100=(7,52-5,22)/7,52×100%=52%), что выше оптимальной на 2%. Произошел обрыв проволоки в вначале прохода, на диаметре 5,2 мм. Концы проволоки были сварены. Диаметр фильеры был увеличен с 5,2 мм до 5,34 мм, что позволило уменьшить степень деформации до 49,3%. На данном проходе обрыва проволоки не происходило. Скорость деформации (V) заготовки выбирали на каждом проходе, в зависимости от диаметра (d) заготовки:

V = 40 м/мин для диаметра d=(от 7,5 до 5,2) мм, μ=52% (обрыв);

V = 40 м/мин для диаметра d=(от 7,5 до 5,34) мм, μ=49,3%;

V = 50 м/мин для диаметра d=(от менее 5,34 до 3,81) мм, μ=49%;

V = 55 м/мин для диаметра d=(от менее 3,81 до 2,87) мм, μ=43%;

V = 60 м/мин для диаметра d=(от менее 2,87 до 2,32) мм, μ=35%;

V = 70 м/мин для диаметра d=(от менее 2,32 до 1,84) мм, μ=37%.

Результаты испытаний проволоки представлены в (табл. 2).

Пример 17. Деформацию заготовки с диаметра 7,5 мм до диаметра 1,84 мм проводили за 5 температурных проходов. Нагрев заготовки проводился до температуры 650°С. Деформацию проводили волочением, нагрев заготовки проводили одним или двумя или тремя индукторами, на режимах, которые не выходили за предельные значения (табл. 1), на установках с номинальной мощностью N1=60 кВт и частотой f1=66 кГц, с номинальной мощностью N2=45 кВт и частотой f2=100 кГц, номинальной мощностью N3=35 кВт и частотой f2=440 кГц для заготовок диаметром от 7,5 до 4,16 мм, на установках с N2=45 кВт и f2=100 кГц, N3=35 кВт и f2=440 кГц для заготовок диаметром от менее 4,16 мм до 2,39 мм, на установке с N3=35 кВт и f2=440 кГц для заготовок диаметром от менее 2,39 мм до 1,84 мм. Деформация заготовки на пятом проходе была разбита на шесть подэтапов со степенью деформации менее 10%. Такой процесс получения проволоки экономически не выгоден. Обрыва проволоки при всех проходах, на диаметре от 2,39 мм до 1,84 мм не было. Скорость деформации (V) заготовки выбирали на каждом проходе, в зависимости от диаметра (d) заготовки:

V = 40 м/мин для диаметра d=(от 7,5 до 5,56) мм, μ=45%

V = 50 м/мин для диаметра d=(от менее 5,56 до 4,16) мм, μ=44%

V = 55 м/мин для диаметра d=(от менее 4,16 до 3,14) мм, μ=43%

V = 60 м/мин для диаметра d=(от менее 3,14 до 2,39) мм, μ=42%

V = 70 м/мин для диаметра d=(от менее 2,39 до 2,31) мм, μ=7%

V = 70 м/мин для диаметра d=(от менее 2,31 до 2,2) мм, μ=9%

V = 70 м/мин для диаметра d=(от менее 2,2 до 2,1) мм, μ=9%

V = 70 м/мин для диаметра d=(от менее 2,1 до 2,01) мм, μ=9%

V = 70 м/мин для диаметра d=(от менее 2,01 до 1,92) мм, μ=9%

V = 70 м/мин для диаметра d=(от менее 1,92 до 1,84) мм, μ=9%

Результаты испытаний проволоки представлены в (табл. 2).

Представленные в таблице 2 данные показывают, что предлагаемый способ изготовления проволоки из (α+β)-титанового сплава для аддитивной технологии с индукционным нагревом позволяет получить проволоку, имеющую повышенные прочностные и пластические свойства, с однородной, мелкозернистой структурой, необходимой длины, одним куском без сварных соединений. Нагрев заготовки при волочении или прокатке до температуры Тз=(450-850)°С, при степени деформации до (10-50)% позволяет получить мелкозернистую структура сплава обладающую высокой прочностью и пластичностью.

Таким образом, предлагаемый способ получения проволоки из (α+β)-титанового сплава позволяет значительно сократить время технологического процесса изготовления проволоки, произвести проволоку без сваривания отдельных кусков, обладающую стабильно высоким уровнем прочности, пластичности и однородности по всей длине, что является одним из главных условий для проволоки, используемой в аддитивных технологиях.

Похожие патенты RU2751067C2

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ 2018
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
  • Игнатовская Анастасия Альбертовна
RU2751068C2
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β) - ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С ВЫСОКОЙ СКОРОСТЬЮ И СТЕПЕНЬЮ ДЕФОРМАЦИИ 2018
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
  • Игнатовская Анастасия Альбертовна
RU2690263C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β) - ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С УДАЛЕНИЕМ ПОВЕРХНОСТНОГО СЛОЯ 2018
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
  • Игнатовская Анастасия Альбертовна
RU2690264C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С ИНДУКЦИОННЫМ НАГРЕВОМ И С ВЫСОКОЙ СТЕПЕНЬЮ ДЕФОРМАЦИИ 2018
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
  • Игнатовская Анастасия Альбертовна
RU2690869C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С КОНТРОЛЕМ ДОПУСКА ТЕМПЕРАТУРЫ И ВЫСОКОЙ СТЕПЕНЬЮ ДЕФОРМАЦИИ 2018
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
  • Игнатовская Анастасия Альбертовна
RU2690905C1
Способ изготовления проволоки из (α+β)-титанового сплава для аддитивной технологии 2018
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
  • Игнатовская Анастасия Альбертовна
RU2751066C2
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ С КОНТРОЛЕМ ПОЛЯ ДОПУСКА ТЕМПЕРАТУРЫ ДЕФОРМАЦИИ 2018
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
  • Игнатовская Анастасия Альбертовна
RU2691815C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ 2018
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
  • Игнатовская Анастасия Альбертовна
RU2751070C2
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (a+b)- ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ 2018
  • Алтынбаев Сергей Владимирович
  • Рассказов Алексей
  • Митяшкин Олег Александрович
  • Уэлст Джонатон Уолтер Томас
  • Игнатовская Анастасия Альбертовна
RU2690262C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛИНОЙ МЕНЕЕ 8500 м ДЛЯ АДДИТИВНЫХ ТЕХНОЛОГИЙ 2020
  • Рассказов Алексей
  • Алтынбаев Сергей Владимирович
RU2750872C1

Иллюстрации к изобретению RU 2 751 067 C2

Реферат патента 2021 года СПОСОБ ИЗГОТОВЛЕНИЯ ПРОВОЛОКИ ИЗ (α+β)-ТИТАНОВОГО СПЛАВА ДЛЯ АДДИТИВНОЙ ТЕХНОЛОГИИ

Изобретение относится к способам изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий. Осуществляют нагрев заготовки и деформацию заготовки путем волочения или прокатки в несколько проходов. Деформацию заготовки проводят при температуре Тз=(450-850)°С, при скорости деформации (25-100) м/мин и степени деформации μ=(10-50)% за один проход, где - μ=(d2i-d2(i+1))/d2i×100, di и d(i+1) - диаметры проволоки до и после деформации на i-м проходе. Нагрев заготовок до этой температуры проводят индукционным методом с использованием одной, двух или трех установок индукционного нагрева с заданной номинальной мощностью и частотой в зависимости от диаметра заготовки. В результате изготавливают проволоку единым куском без сварных соединений с однородной, мелкозернистой структурой, при этом повышается прочность и пластичность проволоки, снижается анизотропия механических свойств по длине и сечению проволоки. 3 з.п. ф-лы, 2 ил., 2 табл., 17 пр.

Формула изобретения RU 2 751 067 C2

1. Способ изготовления проволоки из (α+β)-титановых сплавов для аддитивных технологий, включающий нагрев заготовки и деформацию заготовки путем волочения или прокатки в несколько проходов, отличающийся тем, что деформацию заготовки проводят при температуре Тз=(450-850)°С, при скорости деформации (25-100) м/мин и степени деформации μ=(10-50)% за один проход, где - μ=(d2i-d2(i+1))/d2i×100, di и d(i+1) - диаметры проволоки до и после деформации на i-м проходе, а нагрев заготовок до этой температуры проводят индукционным методом с использованием одной, двух или трех установок индукционного нагрева, при этом заготовки диаметром от 7,5 до 4,16 мм нагревают посредством трех установок, включающих установку с номинальной мощностью N=(50-80) кВт и частотой f=(40-80) кГц, установку с номинальной мощностью N=(30-60) кВт и частотой f=(80-300) кГц и установку с номинальной мощностью N=(10-40) кВт и частотой f=(300-500) кГц, заготовки диаметром от менее 4,16 мм до 2,39 мм нагревают посредством двух установок, включающих установку с номинальной мощностью N=(30-60) кВт и частотой f=(80-300) кГц, и установку с номинальной мощностью N=(10-40) кВт и частотой f=(300-500) кГц, а заготовки диаметром от менее 2,39 мм до 1,84 мм нагревают посредством одной установки с номинальной мощностью N=(10-40) кВт и частотой f=(300-500) кГц.

2. Способ по п. 1, отличающийся тем, что изготавливают проволоку из титанового сплава, содержащего, мас. %: алюминий 5,50-6,76, ванадий 3,50-4,40, железо ≤0,22, углерод ≤0,05, кислород 0,14-0,18, азот ≤0,03, водород ≤0,015, титан - остальное.

3. Способ по п. 1, отличающийся тем, что проволока имеет допуск на диаметр -0,05/+0,01 мм.

4. Способ по п. 1, отличающийся тем, что проволока имеет остаточное напряжение, определенное по отклонению от прямолинейности, на образцах, отобранных в начале и конце проволоки, и составляющее не более 1,0 мм на 1 м проволоки, после ее изгиба по радиусу 150 мм.

Документы, цитированные в отчете о поиске Патент 2021 года RU2751067C2

SU 1520717 A1, 20.09.2001
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПРОЧНОЙ ПРОВОЛОКИ ИЗ СПЛАВА НА ОСНОВЕ ТИТАНА КОНСТРУКЦИОННОГО НАЗНАЧЕНИЯ 2011
  • Снегирева Лариса Анатольевна
  • Колодкин Николай Иванович
  • Козлов Александр Николаевич
RU2460825C1
СПОСОБ ХИМИКО-ТЕРМИЧЕСКОЙ ИНДУКЦИОННОЙ ОБРАБОТКИ МАЛОГАБАРИТНЫХ ИЗДЕЛИЙ ИЗ АЛЬФА-ТИТАНОВЫХ СПЛАВОВ 2015
  • Фомин Александр Александрович
  • Штейнгауэр Алексей Борисович
  • Фомина Марина Алексеевна
  • Родионов Игорь Владимирович
  • Кошуро Владимир Александрович
RU2623979C2
US 20160138149 A1, 19.05.2016.

RU 2 751 067 C2

Авторы

Алтынбаев Сергей Владимирович

Рассказов Алексей

Митяшкин Олег Александрович

Уэлст Джонатон Уолтер Томас

Игнатовская Анастасия Альбертовна

Даты

2021-07-07Публикация

2018-03-05Подача