НЕТКАНОЕ ОБЪЕМНОЕ ТЕРМОСКРЕПЛЕННОЕ ПОЛОТНО С ВКЛЮЧЕНИЕМ МИКРОВОЛОКОН Российский патент 2021 года по МПК D04H1/42 D04H1/435 D04H1/54 

Описание патента на изобретение RU2755350C1

Изобретение относится к нетканому объемному термоскрепленному полотну, сформированному путем диспергирования волокон в потоке воздуха и/или горизонтальной и/или хаотической ориентацией волокнистых масс, и может быть использовано в качестве теплоизоляционного слоя в изделиях для защиты от пониженных температур.

В текстильной терминологии различных стран к микроволокнам могут относиться волокна различной линейной плотности. Так, в США к микроволокнам относят волокна диаметром менее 10 мкм. Впервые они были продемонстрированы еще в начале 1950-х годов военно-морскими исследовательскими лабораториями, которые были заинтересованы в разработке таких волокон для сбора радиоактивных частиц. В Великобритании к микроволокнам относят волокна линейной плотностью 0,9 (1,2) – 0,3 dtex. В ЕС «микроволокно» означает тонкое волокно линейной плотностью менее 1 денье. В Японии как «микроволокно» определяют волокна линейной плотностью 0,04-0,4 денье.

Вместе с тем известно, что нетканые материалы, содержащие большое количество микроволокон, имеют низкое скрепление и высокую миграцию волокон из структуры нетканого материала. Существующие зависимости показателей качества от количества микроволокон в структуре нетканого теплоизоляционного полотна показывают, что по мере увеличении количества микроволокон в структуре нетканого материала ухудшаются его механические и эксплуатационные показатели, а именно снижаются разрывная нагрузка, воздухопроницаемость, устойчивость к многократному сжатию, увеличиваются удлинение при разрыве и миграция. В свою очередь, снижение разрывных характеристик влечет за собой уменьшение «шага стежки» при изготовлении швейных изделий, что приводит к увеличению количества участков со сниженной теплоизоляцией (вследствие потери объема пакета изделия в местах стежки) и трудоемкости создания изделий; увеличение миграции волокон из структуры влечет за собой необходимость применения антимиграционных слоев (типа спанбонд), увеличения плотности переплетения нитей тканей верха и подкладки, применение каландрированных пуходержащих тканей, что ведет к увеличению стоимости, снижению воздухопроницаемости готового изделия; снижение воздухопроницаемости ведет к риску увеличения показателя сопротивления испарению (Ret, м2·Па/Вт), накоплению влаги (w, %), росту парциального давления в пододежном пространстве (P, Па/м2) и повышению дискомфорта.

Ряд выявленных решений (EP 3247826B1, WO 2016118614A1) предлагает снижение миграции за счет применения дополнительных сшивающих агентов в виде смол или увеличенного содержания легкоплавких волокон. Однако, применение дополнительных химических агентов в структуре нетканых теплоизоляционных материалов приводит к повышению жесткости грифа, уменьшает растяжение, эластичность, снижает эргономические показатели нетканых полотен.

Таким образом, задача, решаемая при создании заявленного полотна, состоит в снижении негативного влияния микроволокон на физико-механические, эксплуатационные и потенциальные показатели нетканых материалов, при этом технический результат, достигаемый при решении поставленной задачи, состоит в повышении теплоизоляционных свойств нетканых теплоизоляционных материалов.

Для достижения поставленного результата предлагается нетканый теплоизоляционный материал, выполненный с низкой анизотропией структуры – сплошной пористой среды, сформированной из смеси волокон-1, волокон-2 и волокон-3, содержание которых удовлетворяет одному из следующих условий, в %: волокна-1 - от 5 до 64, волокна-2 - от 34 до 5, волокна-3 – от 61 до 31 или волокна-1 - от 59 до 5, волокна-2 - от 36 до 90, волокна 3 – 5, или волокна-1 - от 60 до 64, волокна-2 - от 34 до 6, волокна-3 – от 6 до 30, или волокна-1 - от 23 до 5, волокна-2 - от 15 до 5, волокна-3 – от 62 до 90;

при этом:

волокна-1 являются микроволокнами с диаметром не более 10 мкм;

волокна-2 являются легкоплавкими волокнами с температурой плавления оболочки от 90 до 200 °С;

волокна-3 являются полиэфирными волокнами;

значение линейной плотности волокон-1 находится в пределах от 0,01 текс до 0,11 текс;

значение линейной плотности волокон-2 находится в пределах от 0,01 текс до 200 текс;

значение линейной плотности волокон-3 находится в пределах 0,12 текс до 200 текс;

волокна-2 удовлетворяют одному из следующих условий (a)÷(e):

а) волокна-2 являются волокнами типа «ядро – оболочка», обеспечивающие значение разрывной нагрузки полотна по длине, Н, от 20,0 до 25,0, разрывной нагрузки полотна по ширине, Н, от 18,0 до 24,5, удлинение при разрыве по длине полотна, %, от 8,3 до 12,0, удлинение при разрыве по ширине полотна, %, от 20,0 до 27,0;

b) волокна-2 являются эксцентрическими волокнами типа «смещенное ядро», обеспечивающие значение разрывной нагрузки полотна по длине, Н, от 18,0 до 22,5, разрывной нагрузки по ширине полотна, Н, от 16,2 до 22,1, удлинение при разрыве полотна по длине, %, от 9,1 до 13,2, удлинение при разрыве по ширине полотна, %, от 22,0 до 29,7;

с) волокна-2 являются волокнами типа «бок-о-бок», обеспечивающие значение разрывной нагрузки по длине полотна, Н, от 14,4 до 18,0, разрывной нагрузки по ширине полотна, Н, от 13,0 до 17,6, удлинение при разрыве по длине полотна, %, от 11,0 до 15,8, удлинение при разрыве по ширине полотна, %, от 26,4 до 35,6;

d) волокна-2 являются волокнами с матрично-фибриллярной структурой типа «острова в море», обеспечивающие значение разрывной нагрузки по длине полотна, Н, от 7,2 до 9,0, разрывной нагрузки по ширине полотна, Н, от 6,5 до 8,8, удлинение при разрыве по длине полотна, %, от 16,4 до 23,8, удлинение при разрыве по ширине полотна, %, от 39,6 до 53,5;

e) волокна-2 являются волокнами с сегментной структурой типа «дольки апельсина», обеспечивающие значение разрывной нагрузки полотна по длине, Н, от 2,5 до 8,6, разрывной нагрузки по ширине полотна, Н, от 1,8 до 6,7, удлинение при разрыве по длине полотна, %, от 31,0 до 50,0, удлинение при разрыве по ширине полотна, %, от 39,0 до 66,0.

Существо заявленного изобретения поясняется рис.1 и 2, иллюстрирующими зависимость между теплоизоляционными свойствами нетканого материала и количеством микроволокон в структуре.

В настоящей заявке под термином «микроволокно» следует понимать волокно линейной плотностью не более 0,11 текс и диаметром не более 10 мкм.

Возможность достижения поставленного результата обусловлена сбалансированным составом нетканого материала, включающего микроволокна и различные по структуре и свойствам синтетические волокна, при этом, для формирования холста в качестве связующего компонента предлагается применение различных видов легкоплавких волокон, обеспечивающих необходимый уровень скрепления, что, в свою очередь, позволяет использовать заявленное полотно для применения в качестве теплоизоляционного слоя, препятствующего переохлаждению при низких температурах внешней среды и позволяющего поддержать комфортную температуру за счет создаваемого препятствия в виде нетканой волокнистой структуры, содержащей большой объем инертного воздуха как между волокнистыми компонентами, так и внутри них.

В практических аспектах реализации, возможность достижения поставленного результата обусловлена следующим. Результаты практических испытаний показывают, что наиболее высокое значение показателя суммарное тепловое сопротивление до мокрой обработки у нетканых материалов поверхностной плотностью 100, 150 и 200 г/м2 наблюдается при содержании микроволокон в диапазоне 20 – 64%, при этом при увеличении содержания количества микроволокон более 64% происходит снижение показателя – см. рис. 1, табл. 1. Для нетканых материалов поверхностной плотностью 100 г/м2 наблюдается снижение показателя на 30% от максимального значения, для нетканых материалов 150 г/м2 наблюдается снижения показателя на 17%, для нетканых материалов поверхностной плотностью 200 г/м2 наблюдается снижение показателя на 21%.

Таблица 1 – средние показатели суммарного теплового сопротивления

Содержание микроволокон, % Поверхностная плотность, г/м2 100 150 200 Суммарное тепловое сопротивление до мокрой обработки, ̊С·м2/Вт 0 0,40 0,50 0,60 < 20 0,50 0,60 0,70 20-64 0,45 0,55 0,60 65-90 0,35 0,50 0,55

Таким образом, для достижения стабильно высокого показателя суммарного теплового сопротивления наиболее сбалансированным составом для нетканых объемных материалов из синтетических волокон является содержание микроволокон не более 64%, при этом максимальная теплоизоляционная эффективность достигается при содержании микроволокон не более 20%.

С увеличением процентного содержания микроволокон более 64% происходит большее снижение потенциальных показателей нетканых материалов (показателей после мокрых обработок) - см. рис. 2. В диапазоне 20 – 64% содержания микроволокон снижение суммарного теплового сопротивления после мокрой обработки в среднем не превышает 5%, при содержании микроволокон более 64% показатель в среднем снижается на 8%. Это связано с тем, что немикроволоконные структурные элементы создают в нетканых материалах устойчивый объемный каркас, который в лучшей степени способствует сохранению объема инертного воздуха в полотне.

Формирование волокнистого холста по заявленному решению осуществляется аэродинамическим и/или горизонтальным, и/или хаотическим способами с получением нетканого материала с низкой анизотропией по своей структуре путем сплошной или локальной термической обработки волокнистого холста из штапельных или непрерывных (фильерных) волокон, содержащего легкоплавкие, волокна. Термическое скрепление холста происходит в разнонаправленных циркулирующих потоках горячего воздуха в температурном диапазон от 100 °С до 240 °С, с возможностью применения дополнительной отделки – каландрирования.

Индустриальная апробация заявленного решения была произведена в изделиях для спорта, туризма, активного отдыха, а также как из один компонентов в одежде для нефтегазового, энергетического, металлургического, машиностроительного комплексов.

Примером результата апробации является нетканое объемное термоскрепленное полотно, выполненное в виде изотропной структуры – сплошной пористой среды, сформированной из смеси 64 % микроволокон линейной плотностью 0,11 текс, 5 % легкоплавких волокон типа «ядро-оболочка» линейной плотностью 0,21 текс, 31 % полиэфирных волокон линейной плотностью 0,33 текс, с дополнительной отделкой каландрированием, поверхностной плотностью 100 г/м2, произведенный аэродинамическим способом формирования холста при температуре 220 °С, обладающее суммарным тепловых сопротивлением до мокрой обработки не менее 0,45 С·м2/Вт (рис.1, табл. 1); либо в соответствии с другими вариантами, представленными ниже в примерах 1-17.

Ниже следуют примеры конкретной реализации нетканых теплоизоляционных материалов в заявленных пределах количественно-качественных значений компонентов (волокон).

Пример 1. Нетканый материал в виде полотна из волокнистой смеси 5 % микроволокон линейной плотностью 0,11 текс, 34 % легкоплавких волокон типа «ядро-оболочка» линейной плотностью 0,22 текс, 21% полиэфирных волокон линейной плотностью 0,78 текс, 40% полиэфирных волокон линейной плотностью 0,33 текс с дополнительной отделкой каландрированием, поверхностной плотностью 150 г/м2, произведенный аэродинамическим способом формирования холста при температуре 220 °С.

Пример 2. Нетканый материал в виде полотна из волокнистой смеси 15 % микроволокон линейной плотностью 0,11 текс, 30 % легкоплавких волокон типа «ядро-оболочка» линейной плотностью 0,22 текс, 55% полиэфирных волокон линейной плотностью 0,33 текс, с дополнительной отделкой каландрированием, поверхностной плотностью 200 г/м2, произведенный аэродинамическим способом формирования холста при температуре 220 °С.

Пример 3. Нетканый материал в виде полотна из волокнистой смеси 59 % микроволокон линейной плотностью 0,08 текс, 36 % легкоплавких волокон типа «смещенное ядро» линейной плотностью 0,16 текс, 5% полиэфирных волокон линейной плотностью 0,78 текс, без каландрирования, поверхностной плотностью 70 г/м2, произведенный аэродинамическим способом формирования холста при температуре 150 °С.

Пример 4. Нетканый материал в виде полотна из волокнистой смеси 5 % микроволокон линейной плотностью 0,08 текс, 90 % легкоплавких волокон типа «смещенное ядро» линейной плотностью 0,16 текс, 5% полиэфирных волокон линейной плотностью 0,33 текс, без каландрирования, поверхностной плотностью 125 г/м2, произведенный аэродинамическим способом формирования холста при температуре 160 °С.

Пример 5. Нетканый материал в виде полотна из волокнистой смеси 45 % микроволокон линейной плотностью 0,08 текс, 50 % легкоплавких волокон типа «смещенное ядро» линейной плотностью 0,16 текс, 5% полиэфирных волокон линейной плотностью 0,33 текс, без каландрирования, поверхностной плотностью 300 г/м2, произведенный аэродинамическим способом формирования холста при температуре 170 °С.

Пример 6. Нетканый материал в виде полотна из волокнистой смеси 60 % микроволокон линейной плотностью 0,10 текс, 34 % легкоплавких волокон типа «дольки апельсина» линейной плотностью 0,44 текс, 6 % полиэфирных волокон линейной плотностью 1,67 текс, с дополнительной отделкой каландрированием, поверхностной плотностью 60 г/м2, произведенный горизонтальным способом формирования холста при температуре 225 °С.

Пример 7. Нетканый материал в виде полотна из волокнистой смеси 64 % микроволокон линейной плотностью 0,10 текс, 6 % легкоплавких волокон типа «дольки апельсина» линейной плотностью 0,44 текс, 15 % полиэфирных волокон линейной плотностью 0,78 текс, 15 % полиэфирных волокон линейно плотностью 1,67 текс с дополнительной отделкой каландрированием, поверхностной плотностью 120 г/м2, произведенный горизонтальным способом формирования холста при температуре 230 °С.

Пример 8. Нетканый материал в виде полотна из волокнистой смеси 20 % микроволокон линейной плотностью 0,11 текс, 20 % легкоплавких волокон типа «ядро-оболочка» линейной плотностью 0,22 текс, 30 % полиэфирных волокон линейной плотностью 0,33 текс, 30 % полиэфирных волокон линейной плотностью 0,78 текс с дополнительной отделкой каландрированием, поверхностной плотностью 150 г/м2, произведенный аэродинамическим способом формирования холста при температуре 220 °С.

Пример 9. Нетканый материал в виде полотна из волокнистой смеси 20 % микроволокон линейной плотностью 0,11 текс, 20 % легкоплавких волокон типа «ядро-оболочка» линейной плотностью 0,22 текс, 30% полиэфирных волокон линейной плотностью 0,33 текс, 30% полиэфирных волокон линейной плотностью 0,78 текс с дополнительной отделкой каландрированием, поверхностной плотностью 220 г/м2, произведенный аэродинамическим способом формирования холста при температуре 235 °С.

Пример 10. Нетканый материал в виде полотна из волокнистой смеси 20 % микроволокон линейной плотностью 0,11 текс, 20 % легкоплавких волокон типа «ядро-оболочка» линейной плотностью 0,22 текс, 30% полиэфирных волокон линейной плотностью 0,33 текс, 30% полиэфирных волокон линейной плотностью 0,78 текс с дополнительной отделкой каландрированием, поверхностной плотностью 170 г/м2, произведенный аэродинамическим способом формирования холста при температуре 228 °С.

Пример 11. Нетканый материал в виде полотна из волокнистой смеси 63 % микроволокон линейной плотностью 0,10 текс, 25 % легкоплавких волокон типа «дольки апельсина» линейной плотностью 0,44 текс, 12 % полиэфирных волокон линейной плотностью 0,78 текс, с дополнительной отделкой каландрированием, поверхностной плотностью 280 г/м2, произведенный горизонтальным способом формирования холста при температуре 230 °С.

Пример 12. Нетканый материал в виде полотна из волокнистой смеси 23 % микроволокон линейной плотностью 0,06 текс, 15 % легкоплавких волокон типа «острова в море» линейной плотностью 2,22 текс, 62 % полиэфирных волокон линейной плотностью 0,12 текс, без каландрирования, поверхностной плотностью 180 г/м2, произведенный горизонтальным способом формирования холста при температуре 160 °С.

Пример 13. Нетканый материал в виде полотна из волокнистой смеси 5 % микроволокон линейной плотностью 0,06 текс, 5 % легкоплавких волокон типа «острова в море» линейной плотностью 2,22 текс, 45 % полиэфирных волокон линейной плотностью 0,33 текс, 45% полиэфирных волокон линейной плотностью 0,12 текс без каландрирования, поверхностной плотностью 230 г/м2, произведенный горизонтальным способом формирования холста при температуре 170 °С.

Пример 14. Нетканый материал в виде полотна из волокнистой смеси 15 % микроволокон линейной плотностью 0,06 текс, 12 % легкоплавких волокон типа «острова в море» линейной плотностью 2,22 текс, 73 % полиэфирных волокон линейной плотностью 0,12 текс, без каландрирования, поверхностной плотностью 320 г/м2, произведенный горизонтальным способом формирования холста при температуре 180 °С.

Пример 15. Нетканый материал в виде полотна из волокнистой смеси 23 % микроволокон линейной плотностью 0,01 текс, 15 % легкоплавких волокон типа «бок-о-бок» линейной плотностью 150 текс, 62 % полиэфирных волокон линейной плотностью 190 текс, без каландрирования, поверхностной плотностью 400 г/м2, произведенный горизонтальным способом формирования холста при температуре 200 °С.

Пример 16. Нетканый материал в виде полотна из волокнистой смеси 5 % микроволокон линейной плотностью 0,01 текс, 5 % легкоплавких волокон типа «бок-о-бок» линейной плотностью 150 текс, 35 % полиэфирных волокон линейной плотностью 190 текс, 55 % полиэфирных волокон линейной плотностью 70 текс, без каландрирования, поверхностной плотностью 500 г/м2, произведенный горизонтальным способом формирования холста при температуре 190 °С.

Пример 17. Нетканый материал в виде полотна из волокнистой смеси 15 % микроволокон линейной плотностью 0,01 текс, 12 % легкоплавких волокон типа «бок-о-бок» линейной плотностью 150 текс, 73 % полиэфирных волокон линейной плотностью 190 текс, без каландрирования, поверхностной плотностью 600 г/м2, произведенный горизонтальным способом формирования холста при температуре 190 °С.

Подытоживая, заявленное решение позволяет получить теплоизоляционный нетканый материал с низкой теплопроводностью, низкой массой, высокой прочностью, низкой миграцией волокон и высокой теплоизоляционной эффективностью за счет комбинирования синтетических волокон различных по строению, диаметру и линейной плотности.

Похожие патенты RU2755350C1

название год авторы номер документа
НЕТКАНЫЙ ТЕПЛОИЗОЛЯЦИОННЫЙ ОГНЕСТОЙКИЙ ДУГОСТОЙКИЙ МАТЕРИАЛ 2019
  • Махов Сергей Александрович
  • Мезенцева Елена Викторовна
  • Гонтарь Виктор Анатольевич
  • Назарцев Андрей Андреевич
  • Иванов Владислав Викторович
RU2702642C1
НЕТКАНЫЙ ТЕПЛОИЗОЛЯЦИОННЫЙ МАТЕРИАЛ С ЭФФЕКТОМ ТЕРМОГЕНЕРАЦИИ 2018
  • Мишаков Виктор Юрьевич
  • Махов Сергей Александрович
  • Мезенцева Елена Викторовна
  • Гонтарь Виктор Анатольевич
  • Назарцев Андрей Андреевич
  • Иванов Владислав Викторович
RU2690573C1
ОРГАНИЧЕСКИЙ НЕТКАНЫЙ УТЕПЛИТЕЛЬ 2020
  • Веселова Оксана Валерьевна
  • Кирсанова Елена Александровна
  • Головлев Михаил Геннадьевич
  • Уваров Николай Александрович
RU2739017C1
НЕТКАНЫЙ МАТЕРИАЛ 2002
  • Лысенко А.А.
  • Асташкина О.В.
  • Мухина О.Ю.
  • Пискунова И.А.
  • Галунов Д.Г.
  • Якобук Анатолий Алексеевич
  • Полховский Михаил Васильевич
  • Гриневич Петр Николаевич
  • Крючков Олег Валерьевич
  • Докучаев Владимир Николаевич
RU2208074C1
Армодренажный гибкий композитный геотекстильный нетканый материал 2021
  • Попов Владимир Борисович
  • Гущин Александр Алексеевич
  • Нестеренко Алексей Вячеславович
RU2774741C1
СПОСОБ ПОЛУЧЕНИЯ ОБЪЕМНОГО НЕТКАНОГО УТЕПЛИТЕЛЯ ДЛЯ ОДЕЖДЫ 2004
  • Бесшапошникова Валентина Иосифовна
  • Куликова Татьяна Владимировна
  • Зайцева Нина Александровна
  • Синицына Тамара Николаевна
RU2287031C2
СПОСОБ ПОЛУЧЕНИЯ ПОЛОТНА ХОЛСТОПРОШИВНОГО БЕЗНИТОЧНОГО 2007
  • Рыжкин Алексей Иванович
  • Кузнецов Виталий Александрович
  • Дедов Александр Васильевич
  • Романов Сергей Васильевич
RU2360049C2
ФИЛЬТРУЮЩИЙ НЕТКАНЫЙ МАТЕРИАЛ 1993
  • Поборознюк Е.Г.
  • Залетов А.И.
  • Иванов А.Ю.
  • Лишевич В.М.
  • Степанова Т.П.
RU2109092C1
НЕТКАНЫЙ ИГЛОПРОБИВНОЙ МАТЕРИАЛ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Белявцев Александр Николаевич
  • Файнер Дмитрий Исакович
RU2365687C1
СПОСОБ ИЗГОТОВЛЕНИЯ НЕТКАНОГО ИГЛОПРОБИВНОГО МАТЕРИАЛА, АРМИРОВАННОГО СЕТКОЙ 2007
  • Белявцев Александр Николаевич
  • Файнер Дмитрий Исакович
RU2360050C2

Иллюстрации к изобретению RU 2 755 350 C1

Реферат патента 2021 года НЕТКАНОЕ ОБЪЕМНОЕ ТЕРМОСКРЕПЛЕННОЕ ПОЛОТНО С ВКЛЮЧЕНИЕМ МИКРОВОЛОКОН

Изобретение относится к области теплоизоляционных материалов. Нетканый материал сформирован из смеси волокон. Волокна включают микроволокна диаметром не более 10 мкм и линейной плотностью от 0,01 до 0,11 текс, легкоплавкие волокна с температурой плавления оболочки от 90 до 200 °С и линейной плотностью от 0,01 до 200 текс и полиэфирные волокна линейной плотностью от 0,12 до 0,11 текс. Технический результат изобретения заключается в улучшении физико-механических, эксплуатационных и теплоизоляционных показателей нетканых материалов. 2 ил., 1 табл., 17 пр.

Формула изобретения RU 2 755 350 C1

Нетканый теплоизоляционный материал, сформированный из смеси волокон-1, волокон-2 и волокон-3, содержание которых удовлетворяет одному из следующих условий, %: волокна-1 - от 5 до 64, волокна-2 - от 34 до 5, волокна-3 – от 61 до 31, или волокна-1 - от 59 до 5, волокна-2 - от 36 до 90, волокна 3 – 5, или волокна-1 - от 60 до 64, волокна-2 - от 34 до 6, волокна-3 – от 6 до 30, или волокна-1 - от 23 до 5, волокна-2 - от 15 до 5, волокна-3 – от 62 до 90;

при этом:

волокна-1 являются микроволокнами с диаметром не более 10 мкм;

волокна-2 являются легкоплавкими волокнами с температурой плавления оболочки от 90 до 200 °С;

волокна-3 являются полиэфирными волокнами;

значение линейной плотности волокон-1 находится в пределах от 0,01 текс до 0,11 текс;

значение линейной плотности волокон-2 находится в пределах от 0,01 текс до 200 текс;

значение линейной плотности волокон-3 находится в пределах 0,12 текс до 200 текс;

волокна-2 удовлетворяют одному из следующих условий (a)-(e):

а) волокна-2 являются волокнами типа «ядро-оболочка», обеспечивающими значение разрывной нагрузки полотна по длине, Н, от 20,0 до 25,0, разрывной нагрузки полотна по ширине, Н, от 18,0 до 24,5, удлинение при разрыве по длине полотна, %, от 8,3 до 12,0, удлинение при разрыве по ширине полотна, %, от 20,0 до 27,0;

b) волокна-2 являются эксцентрическими волокнами типа «смещенное ядро», обеспечивающими значение разрывной нагрузки полотна по длине, Н, от 18,0 до 22,5, разрывной нагрузки по ширине полотна, Н, от 16,2 до 22,1, удлинение при разрыве полотна по длине, %, от 9,1 до 13,2, удлинение при разрыве по ширине полотна, %, от 22,0 до 29,7;

с) волокна-2 являются волокнами типа «бок о бок», обеспечивающими значение разрывной нагрузки по длине полотна, Н, от 14,4 до 18,0, разрывной нагрузки по ширине полотна, Н, от 13,0 до 17,6, удлинение при разрыве по длине полотна, %, от 11,0 до 15,8, удлинение при разрыве по ширине полотна, %, от 26,4 до 35,6;

d) волокна-2 являются волокнами с матрично-фибриллярной структурой типа «острова в море», обеспечивающими значение разрывной нагрузки по длине полотна, Н, от 7,2 до 9,0, разрывной нагрузки по ширине полотна, Н, от 6,5 до 8,8, удлинение при разрыве по длине полотна, %, от 16,4 до 23,8, удлинение при разрыве по ширине полотна, %, от 39,6 до 53,5;

e) волокна-2 являются волокнами с сегментной структурой типа «дольки апельсина», обеспечивающими значение разрывной нагрузки полотна по длине, Н, от 2,5 до 8,6, разрывной нагрузки по ширине полотна, Н, от 1,8 до 6,7, удлинение при разрыве по длине полотна, %, от 31,0 до 50,0, удлинение при разрыве по ширине полотна, %, от 39,0 до 66,0.

Документы, цитированные в отчете о поиске Патент 2021 года RU2755350C1

НЕТКАНЫЙ ТЕПЛОИЗОЛЯЦИОННЫЙ ОГНЕСТОЙКИЙ ДУГОСТОЙКИЙ МАТЕРИАЛ 2019
  • Махов Сергей Александрович
  • Мезенцева Елена Викторовна
  • Гонтарь Виктор Анатольевич
  • Назарцев Андрей Андреевич
  • Иванов Владислав Викторович
RU2702642C1
Приспособление для предупреждения проникания холодного воздуха в помещение через люк, служащий для подачи в последний каких-либо предметов 1927
  • Кудрявцев А.В.
SU13043A1
СПОСОБ ПОЛУЧЕНИЯ ВАНАДИЯ 0
SU180347A1
EP 3247826 A1, 29.11
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами 1924
  • Ф.А. Клейн
SU2017A1
Дробно-рациональный цифроаналоговый преобразователь 1980
  • Выдолоб Геннадий Михайлович
  • Жаворонков Леонид Михайлович
  • Купцов Сергей Владимирович
  • Зайцев Владимир Николаевич
SU896646A1

RU 2 755 350 C1

Авторы

Мезенцева Елена Викторовна

Даты

2021-09-15Публикация

2020-08-12Подача