ПОРОШКОВАЯ ПРОВОЛОКА Российский патент 2021 года по МПК B23K35/368 

Описание патента на изобретение RU2756550C1

Изобретение относится к сварочным материалам, может быть использовано при наплавке под флюсом для восстановления изношенных деталей и получения износостойкого защитного покрытия деталей металлургического оборудования, работающих в условиях сжатия и абразивного износа при температурах 670-750°С, например, прокатных валков черновых и чистовых калибров, а также роликов подающих рольгангов.

Известна порошковая проволока для механизированной наплавки под флюсом (SU №449790 МПК B23K 35/30, B23K 35/30, опубл. 15.11.1974 г.), состоящая из стальной оболочки и порошкообразной шихты, содержащей феррохром, ферромолибден, феррованадий, ферросилиций, ферромарганец, графит, кремнефтористый натрий, ферровольфрам, и железный порошок при соотношении, вес. %:

Феррохром 6-8 Ферромолибден 5,5-8,0 Феррованадий 0,8-1,8 Ферросилиций 0,5-2,0 Ферромарганец 0,2-1,0 Графит 0,05-0,25 Кремнефтористый натрий 1,5-3,5 Ферровольфрам 3,5-5,0 Железный порошок 3,0-14,0 Оболочка остальное

Существенными недостатками данной порошковой проволоки являются:

- пониженные механические свойства наплавленного металла, в частности износостойкости и твердости, за счет повышенной загрязненности стали неметаллическими оксидными включениями, а также низким баллом зерна;

- низкое качество наплавленного металла в связи с порообразованием, связанным с повышенным содержанием водорода;

- возможность образования холодных трещин в процессе многослойной наплавки из-за отсутствия в составе шихты достаточного количества аустенитообразующих элементов, в частности никеля;

Известна, выбранная в качестве прототипа, порошковая проволока (RU №2518211, МПК B23K 35/368, опубл. 10.06.2014 г.), состоящая из стальной оболочки и порошкообразной шихты, содержащей ферровольфрам, ферромарганец, ферросилиций, феррохром, феррованадий, железный порошок, стальная оболочка изготовлена из стали 08ЮА, а порошкообразная шихта дополнительно содержит никель и углеродфторсодержащую пыль электрофильтров алюминиевого производства при следующем соотношении компонентов, мас. %:

стальная оболочка 67,0-68,0 ферровольфрам 10,0-13,75 ферромарганец 0,76-1,41 ферросилиций 0,26-1,34 феррохром 3,38-5,38 феррованадий 0,4-1,0 никель 0,1-1,0

углеродфторсодержащая пыль электрофильтров

алюминиевого производства 0,80-2,58 железный порошок остальное

Существенными недостатками известного состава являются:

- пониженные значения твердости и износостойкости наплавленного слоя металла,

- повышенная отбраковка наплавленного слоя по порам и раковинам в связи с повышенной загрязненностью стали неметаллическими включениями.

Техническая проблема, решаемая заявляемым изобретением, заключается в обеспечении требуемой твердости и скорости износа наплавляемого слоя, а так же в повышении качества наплавляемого слоя (низкой отбраковкой при наплавке).

Для решения существующей технической проблемы в известную порошковую проволоку, состоящую из стальной оболочки и порошкообразной шихты, содержащей ферровольфрам, ферромарганец, ферросилиций, феррохром, феррованадий, никель, углеродфторсодержащую пыль фильтров алюминиевого производства и железный порошок, дополнительно введен титан, а компоненты взяты в следующем соотношении масс. %:

Стальная оболочка 67,0 - 68,0 Ферровольфрам 8,0 - 11,05 Ферромарганец 0,66 - 1,40 Ферросилиций 0,40 - 1,45 Феррохром 2,20 - 4,1 Феррованадий 0,2 - 0,5 Никель 0,01 - 0,5 Титан 0,01 - 0,8

Углеродфторсодержащая пыль электрофильтров

алюминиевого производства 0,80 - 2,30 Железный порошок остальное

Технические результаты, получаемые в результате использования изобретения, заключаются:

- в повышении физико-механических свойств металла (твердости и износостойкости) наплавленного слоя металла за счет введения титана и снижения в связи с этим размеров действительного зерна;

- в повышении качества наплавленного слоя металла за счет уменьшения газонасыщенности (концентрации кислорода и водорода).

Заявляемые пределы подобраны эмпирическим путем, исходя из получения требуемых твердости и износостойкости наплавленного слоя металла, а так же качества получаемого при наплавке металла, стабильности процесса наплавки, предотвращения образования пор и трещин. В состав порошкообразной шихты дополнительно введен титан, позволяющий снизить размер действительного зерна и тем самым повысить твердость и износостойкость наплавляемого металла. Причем введение титана менее 0,01 практически не влияет на уменьшение размера зерна, а при увеличении концентрации титана в порошковой проволоке более 0,80% зерно не снижается, а себестоимость порошковой проволоки значительно повышается.

Углеродфторсодержащая пыль фильтров алюминиевого производства в совокупности с порошкообразными материалами, содержащимися в шихте, позволяет повысить степень раскисленности системы шлак-металл и уменьшить содержание кислорода в наплавляемом слое металла. Снижение содержания водорода и кислорода в наплавленном металле уменьшает вероятность образования пор и трещин. Изменение концентрации углеродфторсодержащей пыли фильтров алюминиевого производства связано с оптимизацией концентрации углерода в наплавляемом слое металла. При снижении концентрации ниже нижнего заявляемого предела концентрация углерода не обеспечивает необходимую твердость и износостойкость, а при превышении концентрации выше верхнего заявляемого предела возможно получение трещин при наплавке. Для изготовления шихты порошковой проволоки использовали углеродфторсодержащую пыль фильтров алюминиевого производства со следующим химическим составом, масс. %: Al2O3 = 19 - 46; F = 17 - 26; Na2O = 2,8 - 14; K2O = 0,36 - 5,8%, СаО = 0,6 - 1,8; SiO2 = 0,5 - 2,7; Fe2O3 = 1,7 - 3,6; Собщ = 22 - 31, MnO = 0,05 - 1,2, MgO = 0,06 - 0,87, S = 0,09 - 0,34, Р = 0,09 - 0,15.

При изготовлении порошковой проволоки использовали: порошки ферровольфрама ФВ 80(a) ГОСТ 17293-93, ферросилиция марки ФС 75 по ГОСТ1415-93, углеродистого ферромарганца ФМн 78(A) по ГОСТ 4755-91, высокоуглеродистого феррохрома марки ФХ900А по ГОСТ 4151-91, феррованадия марки ФВ50У0,6 по ГОСТ 27130-94, никеля марки ПНК-2К9 по ГОСТ 9722-97, титана марки ПТС по ТУ 14-22-57-92, железа марки ПЖВ1 по ГОСТ 9849-86.

Шихта перемешивалась в смесителе для получения однородной массы и прокаливалась для удаления влаги при температуре 250-350°С. Далее производилось изготовление порошковой проволоки на станке. Диаметр готовой проволоки после операций волочения составлял 3,6 мм, при коэффициенте заполнения 0,32-0,33. Порошковой проволокой с предложенной шихтой производилась наплавка заготовок рабочих валков. Наплавка производилась под флюсом изготовленным из шлака производства силикомарганца, выплавленного в рудотермических печах углетермическим способом непрерывным процессом. В опытах использовали фракцию 0,45-2,5 мм. Флюс содержал, масс. %: диоксид кремния 30 - 43, оксид алюминия более 5, оксид кальция 25-38, оксид магния более 1,5, оксид марганца более 16, оксид железа менее 1,0, при этом флюс содержал серы менее 0,60%, фосфора менее 0,030%. Наплавку проводили на режимах: сварочный ток 380-400А, напряжение дуги 32-34 В, скорость наплавки 25 м/ час, скорость подачи порошковой проволоки 73 м/час.

Наличие трещин в процессе наплавки оценивали визуально, после наплавки наличие трещин, пор и неметаллических включений оценивали ультразвуковым методом, а также на металлографических шлифах. Для определения содержания водорода и кислорода проводили наплавку в лабораторных условиях в пределах заявляемых режимов с последующей вырезкой образцов. Содержание кислорода и водорода в наплавленном металле определялось методом восстановительного плавления в вакууме или в потоке инертного газа-носителя на газоанализаторе фирмы «LECO» ТС-600 (США). Содержание водорода изменялось в пределах 0,5-0,8 см3/100 г наплавленного металла при допустимом содержании водорода в высоколегированном наплавленном металле до 2 см3/100 г металла. Твердость и износостойкость наплавленного металла контролировалась непосредственно после наплавки. При использовании заявленных пределов шихты проволоки достигается снижение износа наплавленного слоя. Твердость наплавленного металла после наплавки составляла HRC 42-54. Дефекты (трещины, поры и неметаллические включения) при наплавке порошковой проволокой с шихтой заявляемого состава, содержащей титан не обнаружены.

Исследовались 5 вариантов составов шихты (таблица 1) порошковой проволоки с заграничными и заявляемыми пределами.

Влияние изменения состава шихты порошковой проволоки на технологические и механические характеристики наплавленного металла приведено в таблице 2. Использование заявляемого состава шихты порошковой проволоки по сравнению с базовым составом (прототип) позволяет:

1. Повысить твердость HRC 50-58 и увеличить износостойкость наплавленного слоя металла за счет снижения размера действительного зерна в связи с введением в состав проволоки титана

2. Повысить качество наплавленного металла, а также снизить вероятность порообразования и предотвратить образование трещин за счет снижения газонасыщенности (концентрация кислорода до 310 ppm и водорода до 0,5-0,6 см3/100г металла).

Похожие патенты RU2756550C1

название год авторы номер документа
ПОРОШКОВАЯ ПРОВОЛОКА 2021
  • Юрьев Алексей Борисович
  • Павлов Вячеслав Владимирович
  • Козырев Николай Анатольевич
  • Зинин Дмитрий Михайлович
  • Лазаревский Павел Павлович
  • Михно Алексей Романович
  • Усольцев Александр Александрович
RU2762690C1
ПОРОШКОВАЯ ПРОВОЛОКА 2013
  • Козырев Николай Анатольевич
  • Игушев Валерий Федорович
  • Титов Дмитрий Андреевич
  • Козырева Ольга Евгеньевна
  • Старовацкая Светлана Николаевна
RU2518211C1
ПОРОШКОВАЯ ПРОВОЛОКА 2022
  • Сычёв Антон Андреевич
  • Юрьев Алексей Борисович
  • Козырев Николай Анатольевич
  • Михно Алексей Романович
  • Усольцев Александр Александрович
  • Дробышев Владислав Константинович
RU2785557C1
Порошковая проволока 2016
  • Козырев Николай Анатольевич
  • Гусев Александр Игоревич
  • Галевский Геннадий Владиславович
  • Крюков Роман Евгеньевич
  • Осетковский Иван Васильевич
  • Усольцев Александр Александрович
  • Козырева Ольга Анатольевна
RU2641590C2
ПОРОШКОВАЯ ПРОВОЛОКА 2021
  • Юрьев Алексей Борисович
  • Козырев Николай Анатольевич
  • Михно Алексей Романович
  • Усольцев Александр Александрович
  • Жуков Андрей Владимирович
RU2753632C1
ПОРОШКОВАЯ ПРОВОЛОКА 2022
  • Юрьев Алексей Борисович
  • Козырев Николай Анатольевич
  • Киселев Павел Владимирович
  • Михно Алексей Романович
  • Комаров Андрей Андреевич
RU2779557C1
Порошковая проволока для механизированной наплавки сталей 2020
  • Павлов Вячеслав Владимирович
  • Козырев Николай Анатольевич
  • Усольцев Александр Александрович
  • Лазаревский Павел Павлович
RU2750737C1
ПОРОШКОВАЯ ПРОВОЛОКА 2013
  • Козырев Николай Анатольевич
  • Игушев Валерий Федорович
  • Титов Дмитрий Андреевич
  • Козырева Ольга Евгеньевна
RU2518035C1
ПОРОШКОВАЯ ПРОВОЛОКА ДЛЯ НАПЛАВКИ 2015
  • Антонов Алексей Александрович
  • Артемьев Александр Алексеевич
  • Соколов Геннадий Николаевич
  • Лысак Владимир Ильич
RU2619547C1
Порошковая проволока 2016
  • Козырев Николай Анатольевич
  • Осетковский Иван Васильевич
  • Галевский Геннадий Владиславович
  • Крюков Роман Евгеньевич
  • Гусев Александр Игоревич
  • Козырева Ольга Евгеньевна
  • Усольцев Александр Александрович
RU2632505C1

Реферат патента 2021 года ПОРОШКОВАЯ ПРОВОЛОКА

Изобретение может быть использовано при наплавке под флюсом для восстановления и получения износостойкого защитного покрытия на деталях металлургического оборудования, работающих в условиях сжатия и абразивного износа при температурах 670-750°С. Порошковая проволока состоит из стальной оболочки и порошкообразной шихты и содержит компоненты в следующем соотношении, мас.%: стальная оболочка 67,0-68,0, ферровольфрам 8,0-11,05, ферромарганец 0,66-1,40, ферросилиций 0,40-1,45, феррохром 2,20-4,1, феррованадий 0,2-0,5, никель 0,01-0,5, титан 0,01-0,8, углеродфторсодержащая пыль электрофильтров алюминиевого производства 0,80-2,30, железный порошок - остальное. Изобретение обеспечивает повышение твердости и износостойкости наплавленного слоя металла за счет введения титана и снижения в связи с этим размеров действительного зерна, а также повышение качества наплавленного слоя металла за счет уменьшения газонасыщенности. 2 табл.

Формула изобретения RU 2 756 550 C1

Порошковая проволока, состоящая из стальной оболочки и порошкообразной шихты, содержащей ферровольфрам, ферромарганец, ферросилиций, феррохром, феррованадий, никель, углеродфторсодержащую пыль электрофильтров алюминиевого производства и железный порошок, отличающаяся тем, что порошкообразная шихта дополнительно содержит титан, а проволока содержит компоненты в следующем соотношении, мас.%:

Стальная оболочка 67,0 - 68,0 Ферровольфрам 8,0 - 11,05 Ферромарганец 0,66 - 1,40 Ферросилиций 0,40 - 1,45 Феррохром 2,20 - 4,1 Феррованадий 0,2 - 0,5 Никель 0,01 - 0,5 Титан 0,01 - 0,8 Углеродфторсодержащая пыль электрофильтров алюминиевого производства 0,80 - 2,30 Железный порошок остальное

Документы, цитированные в отчете о поиске Патент 2021 года RU2756550C1

ПОРОШКОВАЯ ПРОВОЛОКА 2013
  • Козырев Николай Анатольевич
  • Игушев Валерий Федорович
  • Титов Дмитрий Андреевич
  • Козырева Ольга Евгеньевна
  • Старовацкая Светлана Николаевна
RU2518211C1
ШИХТА ПОРОШКОВОЙ ПРОВОЛОКИ ДЛЯ НАПЛАВКИ В АЗОТСОДЕРЖАЩЕЙ СРЕДЕ 2017
  • Малушин Николай Николаевич
  • Будовских Евгений Александрович
  • Осетковский Василий Леонидович
  • Ковалев Андрей Петрович
  • Осетковский Иван Васильевич
  • Гизатулин Ринат Акрамович
RU2681049C1
Присадочная порошковая проволока для сварки под флюсом 2018
  • Алешин Николай Павлович
  • Григорьев Михаил Владимирович
  • Коберник Николай Владимирович
  • Панкратов Александр Сергеевич
  • Холодов Сергей Сергеевич
  • Штоколов Сергей Александрович
  • Строителев Дмитрий Викторович
RU2687120C1
Шихта порошковой проволоки 2017
  • Козырев Николай Анатольевич
  • Уманский Александр Александрович
  • Крюков Роман Евгеньевич
  • Думова Любовь Валерьевна
  • Козырева Ольга Анатольевна
  • Непомнящих Александр Сергеевич
  • Федотов Егор Евгеньевич
RU2661126C1
CN 102896437 A, 30.01.2013.

RU 2 756 550 C1

Авторы

Юрьев Алексей Борисович

Козырев Николай Анатольевич

Михно Алексей Романович

Жуков Андрей Владимирович

Белов Денис Евгеньевич

Даты

2021-10-01Публикация

2021-02-12Подача