Изобретение относится к металлургии, в частности к химико-термической обработке конструкционных и инструментальных сталей, и может быть использовано для поверхностного упрочнения деталей машин и технологической оснастки (штампов, пресс-форм, фильер и т.д.) в машиностроительной, металлургической, химической, инструментальной и других отраслях промышленности.
Известен состав для цементации деталей (патент SU 1548263 A1), включающий приготовление пасты путем смешивания графита, углекислого бария, эмали ЭВТ при следующем соотношении компонентов, масс.%: графита–40-70%; углекислого бария–5-10%; остальное-эмаль ЭВТ, нанесение пасты, сушка при Т=100-200°C в течение 0,5-1,0 часа и последующую цементацию проводят при температуре 900°C в течение 4-6 часов, затем образцы подвергают закалке с температуры цементации. Недостатки состоят в том, что возникает необходимость повышения связывающей способности обмазки, использования дополнительной среды (газовой или твердой), вытесняющей воздух из рабочего пространства печи, что усложняет технологию цементации и повышает ее трудоемкость.
Известен способ цементации деталей из конструкционных и инструментальных сталей в цементуемой пасте (патент RU 2704044 С1), характеризующийся тем, что на поверхность детали наносят пасту, которая содержит в качестве порошкообразных сухих компонентов углекислый барий ВаСО3, бентонит, маршалит и сажу ДГ-100 при следующем соотношении компонентов, мас.%: углекислый барий ВаСО3 20-30, бентонит 5-10, маршалит 10-20, сажа ДГ-100 - остальное, а в качестве пастообразователя – декстриновый клей, содержащий следующие компоненты, мас.%: жёлтый декстрин 60-65, вода 30, глицерин 5-10 и бура 5-10, затем указанную деталь нагревают при температуре 920-980°С в течение 5-6 часов и подвергают закалке и низкому отпуску при температуре 150-200°С в течение 2 часов. Данное техническое решение выбрано в качестве прототипа.
Недостатком этого способа является малая износостойкость и коррозионная стойкость деталей из конструкционных и инструментальных сталей, упрочненных в соответствии с описанным процессом, вследствие малой толщины получаемых диффузионных слоев, недостаточная прочность обмазки.
Технической задачей изобретения является повышение износостойкости и коррозионной стойкости деталей, прочности обмазки, обеспечения возможности обработки деталей любых размеров и форм, обеспечение возможности локального упрочнения рабочих поверхностей деталей, повышения равномерности нагрева деталей.
Технический результат достигается тем, что цементуемую среду готовят в виде пасты, содержащей: углекислый барий ВаСО3, феррохром ФХ800А, хлористый аммоний NH4Cl, бентонит, маршалит и сажу ДГ-100 при следующем соотношении компонентов, мас.%: углекислый барий ВаСО3 – 20…30, феррохром ФХ800А – 15…20; хлористый аммоний NH4Cl –2….4; бентонит 5…10, маршалит – 10…20, сажа ДГ-100 – остальное, а в качестве пастообразователя используют нитроцеллюлозный лак НЦ222 – 20…30% от массы порошкообразных компонентов, наносят пасту на деталь, сушат при температуре 70-80°С, затем деталь нагревают в нейтральной соляной ванне при следующем соотношении компонентов, мас.%: NaCl - 35, Na2CO3 - 35, NaOH - 30, при температуре 580-680°C с выдержкой при этой температуре в течение 2-6 часов, далее проводят нагрев в нейтральной соляной ванне при следующем соотношении компонентов, мас.%: NaCl - 50, Na2CO3 - 50 при температуре 950-1150°С в течение 2-4 часов, далее подвергают закалке и отпуску при температуре 200-550°С в течение 2 часов.
Упрочнение деталей из конструкционных и инструментальных сталей с использованием такой технологии обеспечивает высокую износостойкость и коррозионную стойкость деталей, и обеспечивает прочность обмазки при выполнении химико-термической обработки.
Способ упрочнения деталей с использованием предлагаемой пасты осуществляется следующим образом: готовят пасту, для чего тщательно смешивают порошкообразные сухие компоненты и полученную смесь разводят нитроцеллюлозным лаком НЦ222 до образования пастообразной массы. Расход нитроцеллюлозного лака составляет 20…30% от массы порошкообразных компонентов. Приготовленную пасту необходимо использовать в течение 2 часов.
На детали, предварительно очищенные от загрязнений, наносят приготовленную пасту методом погружения в емкость с пастой (детали небольших размеров), либо кистью на упрочняемые поверхности крупногабаритных деталей. Слой пасты на поверхностях деталей должен составлять 2,0…4,0 мм.
Детали с нанесённой на их поверхности пастой высушивают при температуре 70-80°С в течение 0,5-1,0 часа до образования твердого покрытия. Детали с нанесённой на них пастой могут храниться неограниченное время до загрузки в печь, при этом они не вызывают загрязнения оборудования и персонала. Сухое покрытие устойчиво к ударам.
Для дальнейшей обработки детали помещали в нейтральную соляную ванну при следующем соотношении компонентов, мас.%: NaCl - 35, Na2CO3 - 35, NaOH - 30. Подготовленную таким образом ванну с деталями загружали в камерную печь камерную ПКМ 6.12.5/12,5, разогретую до температуры 580-680°C и выдерживали в течение 2-6 часов. Далее детали перемещали в нейтральную соляную ванну при следующем соотношении компонентов, мас.%: NaCl - 50, Na2CO3 – 50 и ванну с деталями загружали в печь при температуре 950-1150°С и выдерживали в течение 2-4 часов.
После этого детали подвергали закалке и отпуску при температуре 200-550°С в течение 2 часов.
В качестве связующего вещества использовали бентонит, обладающий повышенной связывающей способностью и высокой сорбционной и каталитической активностью. Бентониты отличаются высокой водоудерживающей способностью - от 8 до 16 раз от массы сухого вещества. Бентониты не являются дефицитным материалом и выпускаются отечественной промышленностью. Основной недостаток бентонитового покрытия - невысокая прочность при повышенных температурах. Для повышения прочности бентонитового покрытия в его состав был введен маршалит. Маршалит - пылевидный кварц, огнеупорность которого составляет 1650-1710°C, что вполне достаточно для использования в пасте, температура которой не превышает 1200°C. При нагреве с бентонитом маршалит спекается в пористую массу, прочность которой составляет 0,4…0,7 МПа.
Маршалит–доступное и дешевое вещество, входящее в состав огнеупорных материалов. В качестве наполнителя маршалит также входит в состав пластмасс, клеев, красок и т.д. В результате эксперимента установлено, что наилучшее удержание пасты в процессе термической обработки наблюдается при соотношении бентонита и маршалита в связующей части покрытия ~(1:2).
Содержание в пасте газовой сажи ДГ–100 в заданном количестве, является оптимальным, так как распад сажи позволяет насыщающим элементам активно поглощаться сталью, что обеспечивает высокую скорость насыщения при минимальном расходе компонента, а в поверхностном слое образуется корка с зёрнами цементита, что повышает износостойкость деталей. Основным источником углерода в данной цементуемой среде является окись углерода. Её науглероживающее действие проявляется при распаде на поверхности стали с выделением атомарного углерода, который усваивается этой поверхностью.
2СО → С↓Fe + СО2 (1)
Содержание в пасте углекислого бария Ва2СО3 в заданном количестве, является оптимальным, так как он начинает разлагается при температуре 750…950°С, при этом активная окись углерода в цементующем покрытии образуется в результате термической диссоциации углекислого бария
Bа2СО3 → BаО + СО2 (2)
и последующем взаимодействием СО2 с углеродом на поверхности раскалённых частичек сажи
СО2 + С → 2СО (3)
Однако, учитывая высокую науглероживающую способность данного покрытия, можно предположить, что в покрытии образуется дополнительное количество окиси углерода, связанное с диссоциацией окисла BаО. Окись бария диссоциирует на компоненты Ва, О2, и О в результате чего доставляется кислород, необходимый для образования окиси углерода при его реакции с сажей:
О2 + 2С = 2СО; (4)
О + С = СО (5)
Содержание в обмазке феррохрома в количестве, составляющем 15-20 мас.%, является оптимальным, так как при данном содержании образуются достаточная коррозионная стойкость деталей.
При хромировании протекают следующие основные реакции. Хлористый водород образуется при разложении хлористого аммония по реакции
Cl= (6)
и последующее взаимодействие с хромом из хромирующей смеси
2HCl + Cr = + (7)
Далее на поверхности стали протекает обменная реакция между образовавшимся хлоридом хрома и железо
+ Fe = (8)
Выделившийся на поверхности железа атомарный хром диффундирует в деталь на глубину, определяемую временем выдержки при температуре хромирования.
Использование нитроцеллюлозного лака НЦ222– 20…30% от массы порошкообразных компонентов для приготовления пасты повышает достаточную прочность обмазки.
Поверхностное упрочнение деталей с использованием такого покрытия обеспечивает высокую скорость и равномерность насыщения поверхностных слоев углеродом и другими компонентами.
Эффективность заявляемого способа иллюстрируется примером.
Втулки диаметром 50 мм и толщиной 15 мм из стали 5ХГС предварительно обезжиренные уайт-спиритом покрывались слоем пасты, содержащей углекислый барий ВаСО3 – 20…30, феррохром ФХ800А – 15…20, хлористый аммоний NH4Cl – 2….4; бентонит 5…10, маршалит – 10…20, сажа ДГ-100 – остальное, а в качестве пастообразователя используют нитроцеллюлозный лак НЦ222.
Расход нитроцеллюлозного лака составляет 20…30% от массы порошкообразных компонентов. Толщина покрытия детали пастой 2,0 – 4,0 мм. Детали с нанесённой на их поверхности пастой высушивали при температуре 70-80°С в течение 0,5-1,0 часа до образования твердого покрытия.
Для дальнейшей обработки детали помещали в нейтральную соляную ванну при следующем соотношении компонентов, мас.%: NaCl - 35, Na2CO3 - 35, NaOH - 30. Подготовленную таким образом ванну с деталями загружали в камерную печь ПКМ 6.12.5/2,5, разогретую до температуры 580-680°C и выдерживали в течение 2-6 часов. Далее детали перемещали в нейтральную соляную ванну при следующем соотношении компонентов, мас.%: NaCl - 50, Na2CO3 – 50 и ванну с деталями загружали в печь при температуре 950-1150°С и выдерживали в течение 2-4 часов.
После этого детали подвергали закалке и отпуску при температуре 200-550°С в течение 2 часов.
Данный способ упрочнения деталей для повышения их износостойкости и коррозионной стойкости не представляет технологических трудностей, и не требует использования дорогих или дефицитных материалов. Поэтому упрочнение деталей с использованием высокоактивной цементуемой пасты может быть легко внедрена на любом машиностроительном предприятии, как в мелкосерийном и крупносерийном, так и ремонтном. При этом предлагаемый способ отличается высокой производительностью, технологической широтой, экономичностью и экологической безопасностью.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ НИТРОЦЕМЕНТАЦИИ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННЫХ И ИНСТРУМЕНТАЛЬНЫХ СТАЛЕЙ | 2015 |
|
RU2586178C1 |
СПОСОБ НИТРОЦЕМЕНТАЦИИ ДЕТАЛЕЙ ИЗ ШТАМПОВЫХ СТАЛЕЙ | 2014 |
|
RU2574943C1 |
Способ упрочнения деталей из инструментальных и конструкционных сталей в борированной среде | 2020 |
|
RU2748572C1 |
Способ цементации деталей из конструкционных и инструментальных сталей в цементуемой пасте | 2019 |
|
RU2704044C1 |
СПОСОБ НИТРОЦЕМЕНТАЦИИ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННЫХ И ИНСТРУМЕНТАЛЬНЫХ СТАЛЕЙ | 2015 |
|
RU2592339C1 |
СПОСОБ ЦЕМЕНТАЦИИ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННЫХ И ИНСТРУМЕНТАЛЬНЫХ СТАЛЕЙ | 2020 |
|
RU2728333C1 |
СПОСОБ НИТРОЦЕМЕНТАЦИИ ДЕТАЛЕЙ ИЗ ШТАМПОВЫХ СТАЛЕЙ | 2011 |
|
RU2501884C2 |
СПОСОБ СУЛЬФОЦИАНИРОВАНИЯ КОНСТРУКЦИОННЫХ И ИНСТРУМЕНТАЛЬНЫХ СТАЛЕЙ В ВЫСОКОАКТИВНОЙ ПАСТЕ | 2018 |
|
RU2686425C1 |
СПОСОБ НИТРОЦЕМЕНТАЦИИ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННЫХ И ИНСТРУМЕНТАЛЬНЫХ СТАЛЕЙ | 2015 |
|
RU2600612C1 |
СПОСОБ УПРОЧНЕНИЯ ЭЛЕКТРООСАЖДЕННЫХ ЖЕЛЕЗОХРОМИСТЫХ ПОКРЫТИЙ ЦЕМЕНТАЦИЕЙ | 2013 |
|
RU2537471C2 |
Изобретение относится к металлургии, в частности к химико-термической обработке конструкционных и инструментальных сталей, и может быть использовано для поверхностного упрочнения деталей машин и технологической оснастки в машиностроительной, металлургической, химической, инструментальной и других отраслях промышленности. Готовят пасту, содержащую следующие компоненты, мас.%: углекислый барий ВаСО3 – 20-30, феррохром ФХ800А – 15-20, хлористый аммоний NH4Cl – 2-4, бентонит 5-10, маршалит – 10-20, сажа ДГ-100 – остальное. В качестве пастообразователя используют нитроцеллюлозный лак НЦ222 – 20-30% от массы порошкообразных компонентов. Наносят пасту на деталь, сушат при температуре 70-80°С. Затем деталь нагревают в нейтральной соляной ванне при следующем соотношении компонентов, мас.%: NaCl - 35, Na2CO3 - 35, NaOH - 30, при температуре 580-680°C с выдержкой при этой температуре в течение 2-6 часов. Проводят нагрев в нейтральной соляной ванне при следующем соотношении компонентов, мас.%: NaCl - 50, Na2CO3 - 50 при температуре 950-1150°С в течение 2-4 часов. Далее деталь подвергают закалке и отпуску при температуре 200-550°С в течение 2 часов. Обеспечивается повышение прочности обмазки, износостойкости и коррозионной стойкости деталей, а также появляется возможность обработки деталей любых размеров и форм и возможность локального упрочнения рабочих поверхностей деталей. 1 пр.
Способ упрочнения деталей из конструкционных и инструментальных сталей, характеризующийся тем, что готовят пасту, содержащую углекислый барий ВаСО3, феррохром ФХ800А, хлористый аммоний NH4Cl, бентонит, маршалит и сажу ДГ-100 при следующем соотношении компонентов, мас.%: углекислый барий ВаСО3 – 20-30, феррохром ФХ800А – 15-20, хлористый аммоний NH4Cl – 2-4, бентонит 5-10, маршалит – 10-20, сажа ДГ-100 – остальное, а в качестве пастообразователя используют нитроцеллюлозный лак НЦ222 – 20-30% от массы порошкообразных компонентов, наносят пасту на деталь, сушат при температуре 70-80°С, затем деталь нагревают в нейтральной соляной ванне при следующем соотношении компонентов, мас.%: NaCl - 35, Na2CO3 - 35, NaOH - 30, при температуре 580-680°C с выдержкой при этой температуре в течение 2-6 часов, далее проводят нагрев в нейтральной соляной ванне при следующем соотношении компонентов, мас.%: NaCl - 50, Na2CO3 - 50 при температуре 950-1150°С в течение 2-4 часов, далее подвергают закалке и отпуску при температуре 200-550°С в течение 2 часов.
Способ цементации деталей из конструкционных и инструментальных сталей в цементуемой пасте | 2019 |
|
RU2704044C1 |
Способ цементации стальных изделий | 1988 |
|
SU1640202A1 |
СПОСОБ ЦЕМЕНТАЦИИ ДЕТАЛЕЙ ИЗ КОНСТРУКЦИОННЫХ И ИНСТРУМЕНТАЛЬНЫХ СТАЛЕЙ | 2020 |
|
RU2728333C1 |
СПОСОБ ПОЛУЧЕНИЯ 2-МЕТИЛ-2-ЭТИЛ-1,3-ДИОКСОЛАН-4-ИЛ-МЕТИЛМЕТАКРИЛАТА | 1994 |
|
RU2089545C1 |
US 7794551 B1, 14.09.2010. |
Авторы
Даты
2021-10-08—Публикация
2021-03-06—Подача