ЦИФРОВАЯ СИСТЕМА АТМОСФЕРНОЙ ОПТИЧЕСКОЙ СВЯЗИ Российский патент 2021 года по МПК H04B7/00 H04B10/00 

Описание патента на изобретение RU2757997C1

Изобретение относится к технике оптической связи и передачи информации и может быть использовано для организации связи между различными подвижными и стационарными наземными, надводными, воздушными и подводными объектами, а также в аппаратуре атмосферной и космической связи.

Известны системы оптической связи, обеспечивающие обмен информацией между наземными, воздушными, надводными и подводными объектами, состоящие из передающего канала, включающего в себя источник излучения в виде светодиода или лазера и оптическую систему, формирующую оптический пучок или оптический импульс заданной формы, и из приемного канала, включающего в себя объектив и фотоприемник в виде линейки или матрицы чувствительных элементов [1. Патент RU 2703797 от 05.02.2019; 2. Патент RU 2697389 от 22.03.2018; 3. Патент RU 2451397 от 14.10.2009; 4. Патент RU 2608757 от 15.10.2012; RU 2653528 от 19.09.2016. 5. Заявка RU 2020101994 от 17.01.2020].

Наиболее близким к заявляемой системе оптической связи является цифровая система оптической связи [Волков С.А., Овсянкин С.В. Особенности демодуляции современных оптических сигналов // Техника радиосвязи. - 2016. - №1. - С. 64-71], содержащая модулятор и оптический передатчик, соединенные последовательно, оптоэлектронный приемник, аналого-цифровой преобразователь и цифровой демодулятор, соединенные последовательно, при этом выход оптического передатчика и вход оптоэлектронного приемника соединены оптическим каналом связи.

Недостатками аналогов и прототипа являются следующие:

- передача и прием информационных сигналов осуществляются на одной несущей частоте, что не обеспечивает требуемое отношение сигнал/шум в принимаемом сообщении;

- невозможность передачи и приема информационных сигналов на нескольких несущих одновременно;

- существующие оптоэлектронные приемники не могут одновременно работать и в ультрафиолетовом, и в инфракрасном диапазонах длин волн оптического излучения;

- низкая помехозащищенность при работе в дневных условиях, характеризуемых высоким уровнем фотонного шума, обусловленного солнечным излучением;

- демаскировка факта оптической связи в видимом диапазоне оптического излучения.

Задача изобретения - повышение помехозащищенности и пропускной способности системы оптической связи и обеспечение скрытности ее работы.

Технический результат достигается за счет того, что в цифровую систему оптической связи, содержащую последовательно соединенные модулятор и оптический передатчик, последовательно соединенные оптоэлектронный приемник, аналого-цифровой преобразователь и цифровой демодулятор, при этом выход оптического передатчика соединен с оптическим каналом связи, введены блок контроллеров оптического передатчика, соединенный с управляющими входами оптического передатчика, и блок перестраиваемых оптических фильтров, установленный между входом оптоэлектронного приемника и выходом оптического канала связи, при этом оптоэлектронный приемник выполнен в виде оптически последовательно оптически сопряженных приемной оптической системы и набора приемников ультрафиолетового и инфракрасного рабочих спектральных диапазонов оптического излучения, выходы которых являются входами аналого-цифрового преобразователя, который выполнен многоканальным, оптический передатчик выполнен в виде набора перестраиваемых по частоте ультрафиолетового и инфракрасного лазеров, управляющие входы которых соединены с соответствующими выходами контроллера оптического передатчика, информационным сигналом модулируют одновременно излучение оптического передатчика на нескольких несущих частотах, которое одновременно принимают несколькими ультрафиолетовыми и инфракрасными приемниками, при этом несущие частоты излучения оптического передатчика согласованы по электромагнитному спектру с фраунгоферовыми линиями поглощения в ультрафиолетовом и в инфракрасном диапазонах оптического излучения, а оптоэлектронный приемник обеспечивает прием информационных сигналов на несущих частотах ультрафиолетового и инфракрасного излучения в нескольких спектральных диапазонах, соответствующих фраунгоферовым линиям поглощения.

Блок перестраиваемых оптических фильтров выполнен в виде набора узкополосных интерференционных светофильтров, согласованных по спектру с несущими частотами принимаемых информационных сигналов.

Оптоэлектронный приемник обеспечивает прием информационных сигналов на несущих частотах ультрафиолетового и инфракрасного излучения в нескольких спектральных диапазонах, соответствующих фраунгоферовым линиям поглощения. При этом передача и прием информационных сигналов осуществляются через атмосферный и/или через космический оптический канал связи.

Заявляемое изобретение иллюстрируется чертежами:

- фиг. 1 - функциональная схема цифровой системы атмосферной оптической связи;

- фиг. 2 - блок оптического передатчика.

Функциональная схема включает в себя следующие функциональные элементы (см. фиг. 1, 2): 1 - входной информационный сигнал; 2 - модулятор оптического излучения; 3 - оптический передатчик; 31 - перестраиваемый по частоте ультрафиолетовый (УФ)-лазер; 32 - перестраиваемый по частоте инфракрасный (ИК)-лазер; 4 - блок контроллеров оптического передатчика; 41 - контроллер УФ-лазера; 42 - контроллер ИК-лазера u=[uУФ, uИК] - вектор управляющих сигналов контроллера оптического передатчика; uУФ - управляющий сигнал ультрафиолетового лазера; uИК - управляющий сигнал инфракрасного лазера; 5 - атмосферный оптический канал связи; 6 - цифровой оптический приемник; 7 - блок перестраиваемых оптических фильтров; 8 - приемная оптическая система; 9 - блок приемников УФ- 91 и ИК- 92 излучения; 10 - многоканальный аналого-цифровой преобразователь (АЦП); 11 - цифровой демодулятор; 12 - выходной цифровой сигнал, - при этом блок контроллеров оптического передатчика соединен с управляющими входами оптического передатчика 3, блок перестраиваемых оптических фильтров установлен на входе оптоэлектронного приемника, оптоэлектронный приемник выполнен в виде последовательно оптически сопряженных приемной оптической системы и блока приемников ультрафиолетового и инфракрасного рабочих спектральных диапазонов оптического излучения, выходы которых соединены с входами аналого-цифрового преобразователя, который выполнен многоканальным, оптический передатчик выполнен в виде набора перестраиваемых по частоте ультрафиолетового и инфракрасного лазеров, управляющие входы которых соединены соответственно с выходами контроллера УФ-лазера и контроллера ИК-лазера.

В заявляемой цифровой системе атмосферной оптической связи предусмотрена передача информационного сигнала на нескольких несущих частотах оптического диапазона, которые совпадают со спектральными диапазонами, соответствующими спектральным диапазонам фраунгоферовых линий поглощения. Это позволяет, с одной стороны, избавиться от влияния фонового (фотонного) шума от солнечного излучения на фраунгоферовых линиях, то есть существенно улучшить помехозащищенность системы связи, а, с другой стороны, еще больше увеличить отношение сигнал/шум, так как при приеме одного и того же информационного сигнала на n несущих частотах сигналы суммируются линейно, а аддитивные шумы в смеси с полезным сигналом - среднеквадратично, в результате чего отношение сигнал/шум на выходе оптоэлектронного приемника возрастает в корень квадратный из n. Рассмотрим систему уравнений, представляющих собой выходные сигналы u1, u2, …, un приемников УФ- и ИК-излучения, выраженные суммой полезных сигналов S1, S2, …, Sn и шумов N1, N2, …, Nn:

Найдем отношение сигнал/шум S/N:

Из последнего выражения следует, что отношение сигнал/шум в принятом информационном сигнале возрастает в n0,5 раз. Так, например, при использовании 9 несущих частот для передачи информационного сигнала отношение сигнал/шум в принятом сообщении возрастет в 3 раза.

Заявляемая цифровая система атмосферной оптической связи работает следующим образом. Лазерное излучение оптического передатчика 3, промодулированное информационным сигналом 1 в модуляторе 2, на нескольких длинах волны, соответствующих линиям поглощения Фраунгофера и заданных, в зависимости от состояния атмосферного канала связи, контроллерами 41 или 42, пройдя среду распространения в виде слоя атмосферы 5, поступает в блок перестраиваемых оптических фильтров 7, где производится фильтрация фотонного шума от фонового солнечного излучения. Далее информационный сигнал на нескольких несущий частотах поступает в приемную оптическую систему в и далее - в оптоэлектронный приемник 9, преобразующий лазерное излучение в электрический сигнал. Многоканальный АЦП 10 преобразует информационный сигнал в цифровую форму и демодулируется в цифровом демодуляторе 11, выходной сигнал 12 которого подвергается дальнейшей обработке (например, автоматическому распознаванию). При высокой прозрачности атмосферы возможно использование как УФ-, так и ИК-диапазона. В случае замутненной атмосферы использование ИК-диапазона более предпочтительно.

Благодаря применению передачи информационного сигнала с помощью нескольких несущих оптического излучения на длинах волн, соответствующих фраунгоферовым линиям поглощения, для передачи информации достигают максимально возможного значения отношения сигнал/фотонный шум, увеличенного в корень квадратный из числа используемых несущих частот. Увеличение пропускной способности достигается за счет перехода в терагерцевый частотный диапазон, характерный для оптического излучения.

Технический результат заключается в повышении помехозащищенности, в увеличении пропускной способности и отношения сигнал/шум в принимаемом сообщении и в обеспечении скрытности работы системы оптической связи при визуальном наблюдении.

Похожие патенты RU2757997C1

название год авторы номер документа
СИСТЕМА ОПТИЧЕСКОЙ СВЯЗИ 2020
  • Ивановский Владимир Сергеевич
  • Хабибулин Наиль Фаритович
  • Покотило Сергей Александрович
  • Снегирев Александр Леонтьевич
  • Гареев Марат Шамильевич
RU2744941C1
РАДИОФОТОННАЯ ВОЛОКОННО-ОПТИЧЕСКАЯ СИСТЕМА СВЯЗИ (ВАРИАНТЫ) 2022
  • Покотило Сергей Александрович
  • Лобков Юрий Львович
  • Ненадович Дмитрий Михайлович
  • Ефремов Александр Васильевич
RU2798490C1
УСТРОЙСТВО ВИЗУАЛИЗАЦИИ ОБЪЕКТА 2019
  • Покотило Сергей Александрович
  • Снегирев Александр Леонтьевич
  • Гареев Марат Шамильевич
  • Гусеница Ярослав Николаевич
  • Ивановский Владимир Сергеевич
RU2730371C1
Многоканальный волоконно-оптический гетеродинный спектрорадиометр ближнего инфракрасного диапазона 2020
  • Зеневич Сергей Геннадьевич
  • Газизов Искандер Шамилевич
  • Родин Александр Вячеславович
  • Спиридонов Максим Владимирович
  • Чурбанов Дмитрий Владимирович
RU2753612C1
ЛАЗЕРНАЯ СИСТЕМА С ДИНАМИЧЕСКИ СТАБИЛИЗИРУЕМОЙ РЕЛАКСИРУЮЩЕЙ ДЛИНОЙ ВОЛНЫ И СПОСОБ ЕЕ ФУНКЦИОНИРОВАНИЯ 2011
  • Антоненко Владимир Иванович
  • Самарцев Игорь Эдуардович
RU2480876C2
СИСТЕМА И СПОСОБ ДИСТАНЦИОННОГО КОЛИЧЕСТВЕННОГО ОБНАРУЖЕНИЯ УТЕЧЕК ФЛЮИДА В ТРУБОПРОВОДЕ ПРИРОДНОГО ГАЗА ИЛИ НЕФТИ 2004
  • Калайех Хушманд М.
  • Паз-Пуджалт Густаво Р.
  • Спунхауэр Джон П.
RU2362986C2
Система передачи информации в оптическом канале связи 2021
  • Алексеев Александр Александрович
  • Ермиков Сергей Иванович
  • Квашенников Владислав Валентинович
  • Неронский Роман Валентинович
RU2776660C1
СИСТЕМА ОПТИЧЕСКОЙ СВЯЗИ 1999
  • Антоненко С.В.
  • Брызгунов К.В.
  • Коротков Д.П.
RU2154909C1
Система радиосвязи с повышенной разведзащищенностью 2017
  • Стволовая Анастасия Константиновна
  • Павликов Сергей Николаевич
  • Убанкин Евгений Иванович
RU2684477C1
СПОСОБ ОРГАНИЗАЦИИ ДУПЛЕКСНЫХ КАНАЛОВ СВЯЗИ В ОДНОМ ВОЛОКНЕ С ИСПОЛЬЗОВАНИЕМ ОПТИЧЕСКИХ СИГНАЛОВ РАБОТАЮЩИХ ВО ВСТРЕЧНЫХ НАПРАВЛЕНИЯХ И ИМЕЮЩИХ ОДИНАКОВУЮ НЕСУЩУЮ ДЛИНУ ВОЛНЫ С КОНТРОЛЕМ УРОВНЯ ОБРАТНЫХ ОТРАЖЕНИЙ 2012
  • Сергеев Сергей Николаевич
RU2521045C1

Иллюстрации к изобретению RU 2 757 997 C1

Реферат патента 2021 года ЦИФРОВАЯ СИСТЕМА АТМОСФЕРНОЙ ОПТИЧЕСКОЙ СВЯЗИ

Изобретение относится к технике оптической связи и передачи информации и может быть использовано для организации связи между различными подвижными и стационарными наземными, надводными, воздушными и подводными объектами. Технический результат состоит в повышении помехозащищенности цифровой системы атмосферной оптической связи и обеспечении скрытности ее работы. Для этого в цифровую систему оптической связи, содержащую последовательно соединенные модулятор и оптический передатчик, последовательно соединенные оптоэлектронный приемник, аналого-цифровой преобразователь и цифровой демодулятор, при этом выход оптического передатчика соединен с оптическим каналом связи, введены блок контроллеров оптического передатчика, соединенный с управляющими входами оптического передатчика, и блок перестраиваемых оптических фильтров, установленный между входом оптоэлектронного приемника и выходом оптического канала связи, при этом оптоэлектронный приемник выполнен в виде последовательно оптически сопряженных приемной оптической системы и набора приемников ультрафиолетового и инфракрасного рабочих спектральных диапазонов оптического излучения, выходы которых являются входами аналого-цифрового преобразователя, который выполнен многоканальным, оптический передатчик выполнен в виде набора перестраиваемых по частоте ультрафиолетового и инфракрасного лазеров, управляющие входы которых соединены с соответствующими выходами контроллера оптического передатчика, информационным сигналом модулируют одновременно излучение оптического передатчика на нескольких несущих частотах, которое одновременно принимают несколькими ультрафиолетовыми и инфракрасными приемниками, при этом несущие частоты излучения оптического передатчика согласованы по электромагнитному спектру с фраунгоферовыми линиями поглощения. 3 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 757 997 C1

1. Цифровая система атмосферной оптической связи, содержащая последовательно соединенные модулятор и оптический передатчик, последовательно соединенные оптоэлектронный приемник, аналого-цифровой преобразователь и цифровой демодулятор, при этом выход оптического передатчика соединен с оптическим каналом связи, введены блок контроллеров оптического передатчика, соединенный с управляющими входами оптического передатчика, и блок перестраиваемых оптических фильтров, установленный между входом оптоэлектронного приемника и выходом оптического канала связи, при этом оптоэлектронный приемник выполнен в виде последовательно оптически сопряженных приемной оптической системы и набора приемников ультрафиолетового и инфракрасного рабочих спектральных диапазонов оптического излучения, выходы которых являются входами аналого-цифрового преобразователя, который выполнен многоканальным, оптический передатчик выполнен в виде набора перестраиваемых по частоте ультрафиолетового и инфракрасного лазеров, управляющие входы которых соединены с соответствующими выходами контроллера оптического передатчика, информационным сигналом модулируют одновременно излучение оптического передатчика на нескольких несущих частотах, которое одновременно принимают несколькими ультрафиолетовыми и инфракрасными приемниками, при этом несущие частоты излучения оптического передатчика согласованы по электромагнитному спектру с фраунгоферовыми линиями поглощения в ультрафиолетовом и инфракрасном диапазонах оптического излучения, а оптоэлектронный приемник обеспечивает прием информационных сигналов на несущих частотах ультрафиолетового и инфракрасного излучения в нескольких спектральных диапазонах, соответствующих фраунгоферовым линиям поглощения.

2. Цифровая система атмосферной оптической связи по п. 1, отличающаяся тем, что блок перестраиваемых оптических фильтров выполнен в виде набора узкополосных интерференционных светофильтров, согласованных по спектру с несущими частотами принимаемых информационных сигналов.

3. Цифровая система атмосферной оптической связи по п. 1, отличающаяся тем, что оптический канал связи является атмосферным оптическим каналом связи.

4. Цифровая система атмосферной оптической связи по п. 1, отличающаяся тем, что оптический канал связи является космическим оптическим каналом связи.

Документы, цитированные в отчете о поиске Патент 2021 года RU2757997C1

СПОСОБ ЛАЗЕРНОЙ КОСМИЧЕСКОЙ СВЯЗИ И КОМПЛЕКС ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Кутаев Юрий Федорович
  • Манкевич Сергей Константинович
  • Носач Олег Юрьевич
  • Орлов Евгений Прохорович
RU2380834C1
ПЕРЕГОВОРНОЕ УСТРОЙСТВО НА БАЗЕ ТВЁРДОТЕЛЬНОГО ЛАЗЕРА С НАКАЧКОЙ ЛАЗЕРНЫМ ДИОДОМ 2016
  • Григорьев-Фридман Сергей Николаевич
RU2668359C1
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок 1923
  • Григорьев П.Н.
SU2008A1
Токарный резец 1924
  • Г. Клопшток
SU2016A1
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
Способ получения цианистых соединений 1924
  • Климов Б.К.
SU2018A1
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами 1924
  • Ф.А. Клейн
SU2017A1

RU 2 757 997 C1

Авторы

Ивановский Владимир Сергеевич

Хабибулин Наиль Фаритович

Покотило Сергей Александрович

Снегирев Александр Леонтьевич

Овсянкин Сергей Владимирович

Даты

2021-10-25Публикация

2020-07-07Подача