Способ позиционирования оптоволоконного зонда для прецизионной оптической диагностики гемодинамики и кислородного режима тканей пародонта на основе CAD технологии Российский патент 2021 года по МПК A61B8/06 A61B5/26 

Описание патента на изобретение RU2758660C1

Изобретение относится к медицине, а именно к стоматологии для прецизионной оптической диагностики гемодинамики и кислородного режима тканей пародонта на основе CAD технологии (Computer Aided Design - компьютерная поддержка проектирования).

Для диагностики гемодинамики и кислородного режима тканей пародонта используется оптическое волокно, которое является чувствительным к малейшим движениям и изгибам, поэтому в существующих приборах лазерной диагностики с оптическими волокнами остро стоит проблема влияния артефактов на регистрируемый сигнал [Newson, Т.P. Laser Doppler velocimetry: the problem of fibre movement artifacts / T.P. Newson, A. Obeid, R.S. Wolten, D. Bogget, P. Rolfe // J. Biomed. Eng. - 1987. - V. 9. - №2. - C. 169-172.]. Расстояние между излучателем и приемником в оптоволоконном зонде является ограниченным и должно составлять не более 1,2 мм [Fredrikson, I. Measurement depth and volume in Laser Doppler flowmetry / I. Fredrikson, M. Larsson, T. Stromberg // Microvascular research. - 2009. - V. 78. - №1. - P. 4-13], поскольку при больших расстояниях регистрируемый сигнал становится очень слабым.

Исключить негативное влияние артефактов, повысить точность и воспроизводимость исследований в клинических условиях, возможно с помощью CAD технологии, которая позволяет изготовить точный индивидуальный позиционер для оптоволоконного зонда, используемого при регистрации ЛДФ-грамм и ОТО-грамм.

Известен способ позиционирования световодного зонда при использовании лазерной допплеровской флоуметрии в стоматологии, который защищен патентом на изобретение RU2400133, от 27.09.2010 г. При этом способе оценка микроциркуляции крови в пародонте и пульпе зуба проводится посредством лазерной допплеровской флоуметрии, в соответствии с которым световодный зонд устанавливают на исследуемую поверхность десны или коронки зуба, обеспечивая контакт дистальной части зонда с исследуемой поверхностью посредством стоматологического слепочного материала, силиконового или полиэфирного. Позиционер для световодного зонда выполняется из стоматологического слепочного материала. Отверстия в позиционере для зонда выполняются вручную и не обеспечивают точного перпендикулярного расположения датчика относительно исследуемой поверхности, что ведет к неравномерному облучению исследуемой поверхности и получению недостоверных данных. Позиционер из слепочного силикона не обеспечивает надежной фиксации самого позиционера после установки оптоволоконного зонда, что ведет к его сползанию во время исследования, приводящему к изменению конфигурации и уровня ЛДФ-граммы во время записи в течении 5 минут, а также приводит к необходимости придерживания каппы зубами противоположной челюсти, оказывая давление на ткани периодонта дающее искажение получаемых результатов, в виде артефактов за счет сжатия зубов. При этом стоматологический слепочный материал дает усадку, что не позволяет точно повторить условия исследования в динамике. Рабочее расстояние при данной методике от излучателя до исследуемой поверхности невозможно точно установить, так как отсутствует уступ для ограничения погружения оптоволоконного зонда, что приводит к искажению получаемых результатов.

Наиболее близким к предлагаемому является устройство для проведения лазерной доплеровской флоуметрии тканей пародонта и твердых тканей зубов, защищенный патентом на изобретение RU155186, от 28.04.2015 г. Устройство содержит индивидуальную каппу из термопластической массы, выполненную по индивидуальным моделям челюстей пациента, со сквозными отверстиями в интересующих областях, отличающееся тем, что снабжено съемным фиксатором для стекловолоконного зонда с внутренним диаметром, соответствующим диаметру стекловолоконного зонда, каппа с исследуемой вестибулярной или оральной областью имеет зазор толщиной 2 мм между внутренней поверхностью и исследуемой поверхностью пародонта или твердых тканей зубов, а съемный фиксатор размещен в сквозных отверстиях.

В данном устройстве сквозные отверстия в сочетании со съемными фиксаторами для зонда, не позволяют точно контролировать глубину погружения зонда, не дают возможность задать оптимальное расстояние до исследуемой поверхности, не исключают давления на слизистую, что ведет к снижению достоверности получаемых результатов. Каппа выполненная из термопластической массы толщиной всего 2 мм, после установки световодного зонда не обеспечивает надежной фиксации самой каппы, ведет к ее сползанию во время исследования, что приводит к изменению конфигурации ЛДФ-граммы во время записи в течении 5 минут, а также приводит к необходимости придерживания каппы зубами противоположной челюсти, оказывая давление на ткани периодонта дающее искажение получаемых значений, проявлению артефактов на ЛДФ-грамме за счет увеличения давления при удерживании каппы зубами. Сквозные отверстия, выполненные шаровидным бором в каппе толщиной 2 мм, не позволяют создать ложе правильной цилиндрической формы под световодный зонд, не обеспечивают перпендикулярного положение датчика относительно исследуемой поверхности, дополнительное удерживание световода рукой оператора во время исследования увеличивает количество артефактов при регистрации ЛДФ-граммы. Для проведения исследования необходимо снятие слепков для изготовления каппы, их обработка, хранение и транспортировка в зуботехническую лабораторию, где квалифицированный зубной техник изготавливает каппу и передает назад в клинику, что приводит к нескольким клиническим и лабораторным этапам, требует больших временных затрат врача, пациента и техника, нескольких визитов пациента в клинику, четкой согласованности действий врача и зубного техника.

Задача предлагаемого решения - повышение достоверности, результатов за счет исключения давления позиционера и зонда на слизистую оболочку, исключение артефактов за счет стабильного удержания оптоволоконного зонда при оптической диагностике гемодинамики и кислородного режима тканей пародонта с помощью CAD технологии при записи оптических параметров микроциркуляции и кислородного режима тканей пародонта, а также уменьшения клинических и исключения лабораторных этапов при проведении функциональных исследований.

Для решения поставленной задачи у пациента сканируют зубные ряды и слизистую оболочку альвеолярного отростка с помощью стоматологического внутриротового сканера. Полученные в режиме реального времени цифровые модели сохраняют на компьютере в STL или PLY формате (формат файлов описания геометрии, Polygon File Format или Stanford Triangle Format) для последующего цифрового моделирования индивидуального позиционера (Фиг. 1)

Далее с помощью CAD технологии в компьютерной программе «EXOCAD» для 3D дизайна в стоматологии на цифровых моделях задают границы позиционера для надежной ретенции на зубах (Фиг. 2) и область, интересующую для функционального исследования тканей пародонта (Фиг. 3), равномерное разобщение поверхности позиционера со слизистой оболочкой 0,5 мм для исключения давления на мягкие ткани (Фиг. 4), оптимальную толщину позиционера (Фиг. 5,6). Опытным путем установлено, что оптимальная толщина позиционера 4 мм обеспечивает неподвижность светового зонда и позиционера во время функционального исследования тканей пародонта (для оптоволоконного зонда аппарата ЛАКК-М) ЛДФ-грамма и ОТО-грамма стабильные, с хорошим размахом и отсутствием артефактов.

Для проведения функциональной диагностики микроциркуляции и оксигенации тканей пародонта с помощью аппарата ЛАКК-М проектируется необходимое для исследований количество отверстий цилиндрической формы с заданными размерами оптоволоконного зонда, располагающегося точно перпендикулярно к исследуемой поверхности (Фиг. 7). У основания цилиндрического отверстия обращенного к поверхности исследования слизистой оболочки пародонта задается уступ для фиксации оптоволоконного зонда на оптимальном расстоянии до исследуемой поверхности (Фиг. 8). Опытным путем установлено, что толщина уступа 0,2 мм обеспечивает это оптимальное расстояние от излучателя до исследуемой поверхности 0,7 мм (0,5 мм равномерное разобщение со слизистой + 0,2 мм толщина уступа) при этом ЛДФ-грамма и ОТО-грамма стабильные, с хорошим размахом и отсутствием артефактов.

Готовый виртуальный проект индивидуального позиционера для оптоволоконного зонда для прецизионной оптической диагностики гемодинамики и кислородного режима тканей пародонта, созданного с помощью CAD технологии, сохраняется на компьютере в STL формате и отправляется на 3D печать биосовместимой фотополимерной смолой, не пропускающей солнечные лучи, с высокой точностью детализации. (Фиг. 9)

С помощью распечатанного позиционера на 3D принтере, оптоволоконный зонд прибора ЛАКК-М фиксируется в полости рта в цилиндрические отверстия до уступа, точно в областях исследования состояния микроциркуляции и оксигенации тканей пародонта.

Техническим результатом данного изобретения является повышение достоверности оптической диагностики гемодинамики и кислородного режима тканей пародонта, за счет исключения давления позиционера и зонда на слизистую оболочку пародонта, стабильности удержания оптоволоконного зонда в позиционере, надежной фиксации самого позиционера на зубах, и за счет этого исключения артефактов на ЛДФ и ОТО-граммах (Фиг. 10), а также возможность врача для самостоятельного проведения исследований в одно посещение, без привлечения ассистента и зубного техника (при использовании индивидуального позиционера для оптоволоконного зонда спроектированного с помощью CAD технологии, по данным внутриротового сканирования и распечатанного на 3D принтере).

Для подтверждения высокой прецизионности предложенного способа проводили десятикратную регистрацию микроциркуляции и оксигенации одной и той же области пародонта с помощью индивидуального позиционера для оптоволоконного зонда продолжительностью по 1 минуте, с интервалом времени в 30 минут.Полученные ЛДФ-граммы и ОТО-граммы стабильные, с хорошим размахом и отсутствием артефактов. (Фиг. 11) Полученные результаты десятикратного исследования представлены в табл. 1.

По результатам показателей микроциркуляции средние значения показателя микроциркуляции (ПМ) составили 35,43±0,15 п. е., среднеквадратическое отклонение (5), отражающее среднюю модуляцию микрокровотока во всех частотных диапазонах - 1,03±0,12 п.е. и сатурации (SO2) - 64,83±0,73%. При этом воспроизводимость метода ЛДФ находилась в пределах 99,99% по уровню перфузии крови (ПМ), а средняя модуляция кровотока (δ) составила 99,64%, что свидетельствовало о высокой степени воспроизводимости предложенного способа позиционирования оптоволоконного зонда. При этом значения сатурации кислорода кровью SO2 по данным оптической тканевой оксиметрии (ОТО) составило 99,96%. Погрешность соответственно колебалась от 0,01 до 0,36%.

Далее приведены клинические примеры применения способа позиционирования оптоволоконного зонда при оценке гемодинамики и кислородного режима тканей пародонта на основе CAD технологии.

КЛИНИЧЕСКИЕ ПРИМЕРЫ

Пациент А., 35 лет.

С целью оценки показателей гемодинамики и оксигенации тканей пародонта в области прикрепленной десны у клинически здорового человека был изготовлен индивидуальный точный позиционер для оптоволоконного зонда на основе CAD технологии. С помощью позиционера оптоволоконный зонд был зафиксирован в полости рта. Регистрация показателей проводилась по общепринятой методике. Получены следующие данные: показатель микроциркуляции составил (ПМ) 35,3 п.е., среднеквадратичное отклонение (δ) - 1 п.е., сатурации (SO2) - 66,0%. Полученная ЛДФ-грамма и ОТО-грамма стабильные, с хорошим размахом и отсутствием артефактов.

Пациент Т., 33 лет.

С целью оценки показателей гемодинамики и оксигенации тканей пародонта в области прикрепленной десны у активного курильщика табака (27 баллов по интегральному показателю курильщика) пациенту был изготовлен индивидуальный точный позиционер для оптоволоконного зонда на основе CAD технологии. С помощью позиционера оптоволоконный зонд был зафиксирован в полости рта. Регистрация показателей проводилась по общепринятой методике. Получены следующие данные: показатель микроциркуляции (ПМ) составил 30,2 п. е., среднеквадратичное отклонение (δ) - 1,3 п. е., сатурации (SO2) - 55,1%. Полученная ЛДФ-грамма и ОТО-грамма стабильные, с хорошим размахом и отсутствием артефактов.

Краткое описание фигур.

На Фиг. 1 представлено изображение цифровой модели верхней челюсти, полученное в результате внутриротового сканирования.

На Фиг. 2 представлено изображение цифровой модели в компьютерной программе «EXOCAD» с заданной границей позиционера для надежной фиксации на зубах.

На Фиг. 3 представлено изображение цифровой модели в компьютерной программе «EXOCAD» с заданной границей позиционера в области, интересующей для функционального исследования тканей пародонта.

На Фиг. 4 представлено изображение цифровой модели в компьютерной программе «EXOCAD» с увеличенным объемом модели на 0,5 мм (выделено желтым цветом) в области исследований, для создания разобщения позиционера со слизистой оболочкой.

На Фиг. 5, 6 представлены объемные изображения цифровой модели позиционера в компьютерной программе «EXOCAD» с заданной толщиной 4 мм.

На Фиг. 7 представлено изображение цифровой модели с отверстиями цилиндрической формы с заданными размерами оптоволоконного зонда, располагающегося точно перпендикулярно к исследуемой поверхности слизистой оболочки.

На Фиг. 8, 9 представлены изображения цифровой модели виртуального позиционера с отверстиями цилиндрической формы и уступом-упором толщиной 0,2 мм для фиксации оптоволоконного зонда на оптимальном расстоянии до исследуемой поверхности в 0,7 мм.

На Фиг. 10 представлено изображение ЛДФ и ОТО-граммы зарегистрированные в течении 6 минут у пациента с клинически здоровым пародонтом зафиксированным с помощью индивидуального позиционера, выполненного на основе CAD технологии для оптоволоконного зонда аппарата ЛАКК-М.

На Фиг. 11 на изображении представлены ЛДФ и ОТО-граммы десятикратного исследования зарегистрированные в течении 1 мин с интервалом в 30 минут у клинически здорового человека с помощью индивидуального позиционера выполненного на основе CAD технологии для оптоволоконного зонда аппарата ЛАКК-М.

Похожие патенты RU2758660C1

название год авторы номер документа
Способ ранней диагностики нарушений гемодинамики тканей пародонта при курении сигарет 2022
  • Фленкин Андрей Андреевич
  • Ермольев Сергей Николаевич
  • Янушевич Олег Олегович
RU2785740C1
Устройство для мониторинга гемодинамики тканей пародонта 2020
  • Арутюнов Сергей Дарчоевич
  • Степанов Александр Геннадьевич
  • Бондарчук Александра Вадимовна
  • Бутков Денис Сергеевич
  • Левченко Иван Михайлович
  • Зорина Оксана Александровна
  • Царева Татьяна Викторовна
  • Унаньян Карина Геворговна
  • Батов Роман Владимирович
RU2747386C1
Способ фиксации рабочего конца волоконного оптического зонда для исследования гемодинамики тканей пародонта 2020
  • Кулигин Александр Валерьевич
  • Терещук Оксана Сергеевна
  • Казакова Лариса Николаевна
  • Сидоров Виктор Васильевич
RU2744762C1
Устройство для мониторинга гемодинамики тканей пародонта 2021
  • Арутюнов Сергей Дарчоевич
  • Бондарчук Александра Вадимовна
  • Атрушкевич Виктория Геннадьевна
  • Золотницкий Игорь Валерьевич
  • Пивоваров Антон Александрович
RU2758963C1
Устройство для мониторинга гемодинамики тканей пародонта 2020
  • Арутюнов Сергей Дарчоевич
  • Грачев Дмитрий Игоревич
  • Киракосян Левон Гамлетович
  • Антоник Михаил Михайлович
  • Антоник Павел Михайлович
  • Бондарчук Александра Вадимовна
  • Унаньян Карина Геворговна
  • Левченко Иван Михайлович
RU2734405C1
Устройство для оценки внутрикостного кровотока в тканях пародонта 2016
  • Арутюнов Сергей Дарчоевич
  • Ермольев Сергей Николаевич
  • Янушевич Олег Олегович
  • Богатырёва Радима Мурадиновна
  • Немерюк Дмитрий Алексеевич
  • Ерилина Елизавета Дмитриевна
RU2659130C1
СПОСОБ ДИАГНОСТИКИ ВИТАЛЬНОСТИ ПУЛЬПЫ ЗУБА 2007
  • Ермольев Сергей Николаевич
  • Сидоров Виктор Васильевич
  • Логинова Нина Константиновна
  • Шериев Алексей Павлович
  • Тюльпин Юрий Сергеевич
RU2355292C2
УСТРОЙСТВО ДЛЯ УДЕРЖАНИЯ ТОРЦА СВЕТОВОДА ЛАЗЕРА В ОБЛАСТИ ЛИЦА И ПОЛОСТИ РТА 1999
  • Рисованный С.И.
  • Маланьин И.В.
  • Рисованная О.Н.
RU2161016C1
СПОСОБ ОЦЕНКИ ФУНКЦИОНАЛЬНОГО СОСТОЯНИЯ МЫШЕЧНОГО КОМПОНЕНТА ЗУБОЧЕЛЮСТНОГО АППАРАТА 2016
  • Лопушанская Татьяна Алексеевна
  • Войтяцкая Ирина Викторовна
  • Цимбалистов Александр Викторович
  • Синицкий Андрей Анатольевич
  • Михайлова Вера Владимировна
  • Петросян Лев Багатурович
RU2616179C1
Способ мониторинга гемодинамики тканей пародонта 2020
  • Арутюнов Сергей Дарчоевич
  • Грачев Дмитрий Игоревич
  • Атрушкевич Виктория Геннадьевна
  • Антоник Михаил Михайлович
  • Антоник Павел Михайлович
  • Максимова Наталья Владимировна
  • Сахабиева Джамиля Айдаровна
  • Бутков Денис Сергеевич
  • Бондарчук Александра Вадимовна
  • Унаньян Карина Геворговна
RU2738729C1

Иллюстрации к изобретению RU 2 758 660 C1

Реферат патента 2021 года Способ позиционирования оптоволоконного зонда для прецизионной оптической диагностики гемодинамики и кислородного режима тканей пародонта на основе CAD технологии

Изобретение относится к медицине, а именно к способам позиционирования оптоволоконного зонда для прецизионной оптической диагностики гемодинамики и кислородного режима тканей пародонта. Способ основан на CAD технологии и заключается в следующем. С помощью стоматологического внутриротового сканера у пациента сканируют зубные ряды и слизистую оболочку альвеолярного отростка. Полученные цифровые модели сохраняют на компьютере в STL или PLY формате. С помощью CAD технологии в компьютерной программе «EXOCAD» для 3D дизайна в стоматологии на цифровых моделях задают границы области, интересующей для исследования. Толщину позиционера 4 мм, равномерное разобщение поверхности позиционера со слизистой оболочкой 0,5 мм для исключения давления на мягкие ткани. Далее проектируются отверстия цилиндрической формы, соответствующие размерам диаметра оптоволоконного зонда, располагающиеся перпендикулярно к исследуемой поверхности. У основания цилиндра, обращенного к поверхности исследования, задается уступ толщиной 0,2 мм для фиксации оптоволоконного зонда на расстоянии 0,7 мм до исследуемой поверхности. Готовый проект сохраняется на компьютере в STL формате и отправляется на 3D печать биосовместимой фотополимерной смолой, не пропускающей солнечные лучи. Далее с помощью распечатанного позиционера оптоволоконный зонд прибора ЛАКК-М фиксируется в полости рта в цилиндрические отверстия позиционера до уступа. Достигается повышение достоверности результатов за счет исключения давления позиционера и зонда на слизистую оболочку и исключение артефактов за счет стабильного удержания оптоволоконного зонда. 11 ил.

Формула изобретения RU 2 758 660 C1

Способ позиционирования оптоволоконного зонда для прецизионной оптической диагностики гемодинамики и кислородного режима тканей пародонта на основе CAD технологии заключается в следующем: с помощью стоматологического внутриротового сканера у пациента сканируют зубные ряды и слизистую оболочку альвеолярного отростка, полученные цифровые модели сохраняют на компьютере в STL или PLY формате, далее с помощью CAD технологии в компьютерной программе «EXOCAD» для 3D дизайна в стоматологии на цифровых моделях задают границы области, интересующей для исследования, толщину позиционера 4 мм, равномерное разобщение поверхности позиционера со слизистой оболочкой 0,5 мм для исключения давления на мягкие ткани, далее проектируются отверстия цилиндрической формы, соответствующие размерам диаметра оптоволоконного зонда, располагающиеся перпендикулярно к исследуемой поверхности, у основания цилиндра, обращенного к поверхности исследования, задается уступ толщиной 0,2 мм для фиксации оптоволоконного зонда на расстоянии 0,7 мм до исследуемой поверхности, далее готовый проект сохраняется на компьютере в STL формате и отправляется на 3D печать биосовместимой фотополимерной смолой, не пропускающей солнечные лучи, далее с помощью распечатанного позиционера оптоволоконный зонд прибора ЛАКК-М фиксируется в полости рта в цилиндрические отверстия позиционера до уступа.

Документы, цитированные в отчете о поиске Патент 2021 года RU2758660C1

СПОСОБ ПОЗИЦИОНИРОВАНИЯ СВЕТОВОДНОГО ЗОНДА ПРИ ИСПОЛЬЗОВАНИИ ДОПЛЕРОВСКОЙ ФЛОУМЕТРИИ В СТОМАТОЛОГИИ 2009
  • Ермольев Сергей Николаевич
  • Жолудев Сергей Егорович
  • Ерошкина Елена Александровна
  • Делец Александр Владимирович
RU2400133C1
0
SU155186A1
Устройство для оценки внутрикостного кровотока в тканях пародонта 2016
  • Арутюнов Сергей Дарчоевич
  • Ермольев Сергей Николаевич
  • Янушевич Олег Олегович
  • Богатырёва Радима Мурадиновна
  • Немерюк Дмитрий Алексеевич
  • Ерилина Елизавета Дмитриевна
RU2659130C1
Диск для шершевания деталей обуви 1949
  • Бедрих Корбел
SU89372A3
WO 2014110548 A1, 17.07.2014.

RU 2 758 660 C1

Авторы

Фленкин Андрей Андреевич

Ермольев Сергей Николаевич

Янушевич Олег Олегович

Винниченко Юрий Алексеевич

Меркушева Нина Андреевна

Боярский Юрий Викторович

Ахметов Артур Иззетович

Даты

2021-11-01Публикация

2020-06-19Подача