СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЯ С НИЗКОЙ ПОВЕРХНОСТНОЙ ЭНЕРГИЕЙ ПРОТИВ БИООБРАСТАНИЯ Российский патент 2021 года по МПК B63B59/04 

Описание патента на изобретение RU2760600C1

Изобретение относится к способам получения покрытий с низкой поверхностной энергией и может применяться в области судостроения, в частности для создания покрытия на металлических поверхностях для защиты от биообрастания в зонах переменной смачиваемости (ЗПС) и полного погружения корпусов судов и гидротехнических сооружений, устройств, конструкций, эксплуатирующихся в водной морской среде. Обрастание подводной части судов морскими организмами приводит к резкому сокращению скорости судов, повышенному расходу топлива, порче корпуса судна и гидротехнических сооружений.

Известен способ защиты подводных выступающих частей корпуса быстроходного судна от выпадания на них солей и обрастания, включающий многослойное покрытие на основе синтетических смол с последующим двухслойным покрытием необрастающими красками (SU 209978 А1, МПК В63В 59/04, Опубликовано 28.05.69, Бюл. 18).

Недостатками известного способа являются ограниченность его использования для малотоннажных судов, его высокая себестоимость, сопряженная с операциями шлифовки и полировки, а также использование токсических противообрастающих красок.

Известен способ защиты поверхности погруженного объекта от обрастания, содержащий операцию нанесения на поверхность погруженного объекта антикоррозионного слоя, поверх которого наносят покрытие, выполненное из кобальта, никеля, лантаноидов или их сплавов (RU 2043256 C1, В63В 59/04, Опубликовано 10.09.95, Бюл. 25).

Недостатками является то, что в известном способе средством, препятствующим развитию биообрастания, служит токсическое воздействие на среду, высокая стоимость используемых материалов, а также невозможность декоративного оформления плавучих средств.

В качестве прототипа выбран наиболее близкий к заявляемому способу по совокупности существенных признаков способ получения покрытия с низкой поверхностной энергией против биообрастания на металлических поверхностях в зонах переменной смачиваемости и полного погружения конструкций, эксплуатирующихся в водной морской среде, включающий последовательное нанесение на поверхность металлического подслоя и финишного слоя (RU 2107005 С1, МПК В63В 59/04, Опубликовано 20.03.98, Бюл. 8).

Недостатками прототипа является то, что предотвращение обрастания биомассой поверхности судов достигают за счет токсического воздействия на среду ионов меди, а также большая вероятность коррозии алюминиевого слоя под воздействием морской воды.

Задачей заявляемого технического решения является разработка способа получения покрытия с низкой поверхностной энергией против биообрастания на металлической поверхности, обеспечивающего высокие физико-механические свойства покрытий, относительно невысокую их стоимость и широкие функциональные возможности.

Технический результат: повышение эффективности и расширение области применения; создание дополнительной антикоррозионной защиты за счет металлического коррозионно-стойкого покрытия; реализация создания металлополимерного покрытия с последовательным нанесением металлического; переходного и поверхностного полимерного слоев покрытия в рамках одного технологического процесса; отсутствие ограничений по площади нанесения; понижение энергозатрат на реализацию способа; повышение эксплуатационных характеристик создаваемых покрытий.

Технический результат достигается тем, что дополнительно наносят переходный металлополимерный слой, при этом сначала наносят металлический подслой из цинк-алюминий-магниевого сплава толщиной 100-1000 мкм, затем в металлизационную струю инжектируют полимерный компонент, таким образом, чтобы получить переходный металлополимерный слой покрытия, после чего отключают металлизационную струю и наносят поверхностный полимерный слой толщиной 50-200 мкм с использованием полимерного компонента, затем проводят термообработку покрытия газовым пламенем до температуры 360-380°C, при этом в качестве полимерного компонента используют фторпластовую суспензию, а покрытие наносят способом электродугового напыления, с помощью оборудования, укомплектованного устройством для инжектирования и термообработки полимерного компонента.

Нанесение на металлическую поверхность способом электродугового напыления металлического подслоя из цинк-алюминий-магниевого сплава обеспечивает получение антикоррозионных свойств и адгезии к металлической поверхности.

Совместное нанесение металлополимерного слоя покрытия, путем инжектирования в металлизационную струю фторопластовой суспензии используется для создания переходного слоя и обеспечивает соединение с последующим поверхностным слоем полимерного покрытия.

Для нанесения компонентов и слоев покрытия на металлическую поверхность применяется технология электродуговой металлизации. Нанесение слоев выполняется последовательно, без перерыва при использовании установки электродуговой металлизации, укомплектованной дополнительным комплектом для инжектирования и термообработки фторопластовой суспензии.

Покрытие с низкой поверхностной энергией против биообрастания представляет собой композиционный слой из металла и термопластичного полимера на основе фторопласта. Металлическая основа состоит из цинк-алюминий-магниевого многофазного псевдосплава с высокими антикоррозионными свойствами и стойкостью к морской воде, а также отрицательным, по отношению к конструкционным сталям электродным потенциалом. Металлический слой имеет высокую адгезию 5-20 МПа к поверхности, которая не ухудшается со временем, а напротив возрастает за счет диффузии металла покрытия в металл поверхности. Поры металлического слоя заполнены полимером, который на поверхности образует сплошной слой с низкой поверхностной энергией, препятствующей прикреплению к поверхности биологических организмов. Наличие цинка в металлической матрице также является фактором, замедляющим процессы биообрастания. Толщина покрытия 300-500 мкм.

Согласно заявляемому способу на металлическую поверхность, подготовленную абразивно-струйной обработкой, наносится способом электродугового напыления металлический подслой из цинк-алюминий-магниевого сплава для обеспечения антикоррозионных свойств и адгезии к металлической поверхности. Далее из форсунок, дополнительно установленных на пистолете металлизатора, запускается инжектирование в металлизационную струю фторопластовой суспензии для создания переходного слоя и обеспечения соединения с последующим поверхностным слоем полимерного покрытия. После чего происходит отключение металлизационной струи и выполняется нанесение на металлополимерное покрытие поверхностного слоя полимерного покрытия с последующей термообработкой газовым пламенем, формируемым кольцевым контуром, дополнительно установленным на пистолете металлизатора, и полимеризацией.

Полученный поверхностный слой покрытия обладает низкой поверхностной энергией, препятствующей прикреплению к поверхности биологических организмов. Наличие цинка в металлической матрице также является фактором, замедляющим процессы биообрастания.

Пример 1

Металлическое покрытие напыляют с использованием электродугового металлизатора Thermach на образцы из стали 20. Поверхность под нанесение покрытия готовят абразивно-струйной обработкой. В качестве материалов для металлического слоя используют цинковую проволоку ГОСТ 13073-2018 и алюминий-магниевую проволоку СвАМг5 (ГОСТ 7871-75) диаметром 2,5 мм, для полимерного покрытия - фторопластовая суспензия Ф-4Д. Давление воздуха на входе в металлизатор 0,5 МПа, дистанция напыления 150-250 мм, ток дуги 200-250 А, напряжение 20-25 В. Необрастающее металлополимерное покрытие наносят толщиной 350±150 мкм.

Предлагаемое покрытие и технология его создания отличаются технологичностью, невысокой стоимостью, доступностью технологического оборудования, возможностью нанесения на различные поверхности, в том числе на поверхности объектов, находящихся в эксплуатации без их демонтажа. Полученные покрытия отличаются долговечностью, коррозионной стойкостью и износостойкостью.

Заявляемый способ отвечает критериям патентоспособности и может быть использован как при постройке новых, так и при ремонте ранее эксплуатируемых судов разного класса, а также портовых и других гидротехнических сооружений.

Похожие патенты RU2760600C1

название год авторы номер документа
СПОСОБ ЭЛЕКТРОДУГОВОГО НАПЫЛЕНИЯ ПОКРЫТИЯ 2019
  • Балдаев Лев Христофорович
  • Балдаев Сергей Львович
  • Игнатова Светлана Александровна
  • Козлов Никита Сергеевич
  • Мазилин Иван Владимирович
  • Маньковский Сергей Александрович
  • Мухаметова Светлана Салаватовна
  • Павлов Андрей Юрьевич
RU2715827C1
СПОСОБ ПОЛУЧЕНИЯ НЕСКОЛЬЗЯЩЕГО ПОКРЫТИЯ 2020
  • Балдаев Лев Христофорович
  • Балдаев Сергей Львович
  • Маньковский Сергей Александрович
  • Козлов Никита Сергеевич
  • Павлов Андрей Юрьевич
  • Ищенко Юрий Николаевич
RU2753273C1
СПОСОБ ПОЛУЧЕНИЯ АНТИКОРРОЗИОННОГО МЕТАЛЛОПОЛИМЕРНОГО ПОКРЫТИЯ 2021
  • Балдаев Лев Христофорович
  • Балдаев Сергей Львович
  • Козлов Никита Сергеевич
  • Маньковский Сергей Александрович
  • Павлов Андрей Юрьевич
RU2789355C1
УСТРОЙСТВО ДЛЯ НАНЕСЕНИЯ МЕТАЛЛОПОЛИМЕРНОГО ПОКРЫТИЯ 2019
  • Балдаев Лев Христофорович
  • Балдаев Сергей Львович
  • Игнатова Светлана Александровна
  • Козлов Никита Сергеевич
  • Мазилин Иван Владимирович
  • Маньковский Сергей Александрович
  • Мухаметова Светлана Салаватовна
  • Павлов Андрей Юрьевич
RU2725785C1
ГРЕБНОЙ ВИНТ С ЗАЩИТНЫМ МЕТАЛЛОПОЛИМЕРНЫМ ПОКРЫТИЕМ 2018
  • Борусевич Валерий Олегович
  • Пустошный Александр Владимирович
  • Шевцов Сергей Павлович
  • Балдаев Лев Христофорович
  • Балдаев Николай Христофорович
  • Козлов Никита Сергеевич
  • Маньковский Сергей Александрович
  • Старшов Игнат Михайлович
RU2700519C1
СПОСОБ ЗАЩИТЫ ОТ БИООБРАСТАНИЯ 2015
  • Раилкин Александр Иванович
  • Отвалко Жанна Анатольевна
  • Твердов Александр Иванович
  • Коротков Сергей Иванович
  • Фомин Сергей Евгеньевич
RU2588225C1
СПОСОБ ЗАЩИТЫ ОТ БИООБРАСТАНИЯ 2015
  • Отвалко Жанна Анатольевна
  • Раилкин Александр Иванович
  • Твердов Александр Иванович
  • Коротков Сергей Иванович
  • Фомин Сергей Евгеньевич
  • Рудакова Елена Владимировна
RU2588253C1
СПОСОБ ОТДЕЛКИ ИЗДЕЛИЙ ИЗ ДРЕВЕСИНЫ 1996
  • Гонопольский Адам Михаилович[Ru]
RU2103412C1
СПОСОБ НАНЕСЕНИЯ МЕТАЛЛОПОЛИМЕРНОГО ПОКРЫТИЯ 2015
  • Балдаев Николай Христофорович
  • Гацук Валерий Николаевич
  • Маньковский Сергей Александрович
RU2627543C2
СПОСОБ ЗАЩИТЫ ПОВЕРХНОСТИ ПОГРУЖЕННОГО ОБЪЕКТА ОТ ОБРАСТАНИЯ 1992
  • Раилкин А.И.
  • Серавин Л.Н.
  • Голиков И.В.
  • Могилевич М.М.
RU2043256C1

Реферат патента 2021 года СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЯ С НИЗКОЙ ПОВЕРХНОСТНОЙ ЭНЕРГИЕЙ ПРОТИВ БИООБРАСТАНИЯ

Изобретение относится к способам получения покрытий для защиты от биообрастания корпусов судов и гидротехнических сооружений, устройств, конструкций, эксплуатирующихся в морской среде. Предложен способ получения покрытия с низкой поверхностной энергией против биообрастания на металлических поверхностях, включающий последовательное нанесение на поверхность металлического подслоя и поверхностного слоя, при этом дополнительно наносят переходный металлополимерный слой, причем сначала электродуговым напылением наносят металлический подслой из цинк-алюминий-магниевого сплава толщиной 100-1000 мкм, затем в металлизационную струю инжектируют полимерный компонент, таким образом, чтобы получить переходное металлополимерное покрытие, после чего отключают металлизационную струю и наносят поверхностный полимерный слой толщиной 50-200 мкм с использованием полимерного компонента, затем проводят термообработку покрытия газовым пламенем до температуры 360-380°C, при этом в качестве полимерного компонента используют фторпластовую суспензию. Технический результат: снижение энергозатрат на реализацию способа получения покрытий, отсутствие ограничений по площади нанесения покрытий, повышение эксплуатационных характеристик создаваемых покрытий.

Формула изобретения RU 2 760 600 C1

Способ получения покрытия с низкой поверхностной энергией против биообрастания на металлических поверхностях в зонах переменной смачиваемости и полного погружения конструкций, эксплуатирующихся в водной морской среде, включающий последовательное нанесение на поверхность металлического подслоя и поверхностного слоя, отличающийся тем, что дополнительно наносят переходный металлополимерный слой, при этом сначала электродуговым напылением наносят металлический подслой из цинк-алюминий-магниевого сплава толщиной 100-1000 мкм, затем в металлизационную струю инжектируют полимерный компонент, таким образом, чтобы получить переходное металлополимерное покрытие, после чего отключают металлизационную струю и наносят поверхностный полимерный слой толщиной 50-200 мкм с использованием полимерного компонента, затем проводят термообработку покрытия газовым пламенем до температуры 360-380°C, при этом в качестве полимерного компонента используют фторпластовую суспензию.

Документы, цитированные в отчете о поиске Патент 2021 года RU2760600C1

WO 9725243 A1, 17.07.1997
СПОСОБ ЗАЩИТЫ ОТ БИООБРАСТАНИЯ 2015
  • Раилкин Александр Иванович
  • Отвалко Жанна Анатольевна
  • Твердов Александр Иванович
  • Коротков Сергей Иванович
  • Фомин Сергей Евгеньевич
RU2588225C1
US 4375199 A, 01.03.1983
US 5814172 A, 29.09.1998
DE 102011053096 A1, 28.02.2013
СПОСОБ ЗАЩИТЫ ПОВЕРХНОСТИ ПОГРУЖЕННОГО ОБЪЕКТА ОТ ОБРАСТАНИЯ 1992
  • Раилкин А.И.
  • Серавин Л.Н.
  • Голиков И.В.
  • Могилевич М.М.
RU2043256C1
СПОСОБ КОМПЛЕКСНОЙ ЗАЩИТЫ ПОДВОДНЫХ ПОВЕРХНОСТЕЙ ПЛАВУЧИХ СРЕДСТВ И ГИДРОТЕХНИЧЕСКИХ СООРУЖЕНИЙ 2002
  • Алмазова Э.А.
  • Рябинин Н.А.
  • Бабахин А.И.
  • Хлебодаров Н.И.
RU2207291C1

RU 2 760 600 C1

Авторы

Балдаев Лев Христофорович

Балдаев Сергей Львович

Маньковский Сергей Александрович

Козлов Никита Сергеевич

Павлов Андрей Юрьевич

Ищенко Юрий Николаевич

Даты

2021-11-29Публикация

2020-06-29Подача