Изобретение относится к способам получения нескользящего покрытия для обеспечения хороших сцепных свойств и отсутствия проскальзывания и может применяться в области судостроения, в частности на металлических поверхностях трапов, лестниц, мостиков, пешеходных дорожек, автомобильных пандусов, вертолетных площадок, палуб судов при перемещении палубной техники и передвижении людей.
Известен способ получения противоскользящего покрытия на керамической плитке (RU 2425818 С1, МПК С04В 41/83, Опубликовано 10.08.2011 Бюл. №22). Способ получения противоскользящего покрытия на керамической плитке, включающий приготовление керамической массы, пластическое формование плитки, ее сушку и обжиг, нанесение слоя абразивного материала на поверхность плитки, отличающийся тем, что нанесение слоя абразивного материала с последующим его прикатыванием осуществляют до сушки плитки, а после обжига поверхность плитки с нанесенным на нее слоем абразивного материала пропитывают мономером стирола, или акрилонитрила, или метилметакрилата с последующей его полимеризацией, причем мономер наносят вместе с инициирующей системой, включающей перекись бензоила и диметиланилин, взятые в массовом соотношении 1:0,5, при этом инициирующая система составляет 2% от массы мономера.
Недостатком является ограничение применения противоскользящего покрытия на других материалах, например, металлах и низкие эксплуатационные характеристики. Длительность технологических операций и ограничение габаритов при сушке и обжиге.
Известен способ получения напольной плитки с противоскользящим покрытием (RU 58143 U1, МПК E04F 15/08, Опубликовано 10.11.2006 Бюл. №31). Напольная плитка, содержащая основу из минерального материала, искусственного камня или керамики, декоративное покрытие, резиновое или полимерное противоскользящее покрытие, отличающаяся тем, что основа имеет одно или несколько углублений, в которые вулканизируется резиновое или наносится полимерное покрытие с рифленой противоскользящей поверхностью.
Недостатком ограничение применения противоскользящего покрытия на других материалах, например, металлах. Трудоемкость изготовления. Узкая область применения.
Известна судовая подножная накладка (RU 2708519 С1, МПК В63В 3/48, Опубликовано 09.12.2019 Бюл. №34). Судовая подножная накладка, конструктивно состоящая из корпуса подножной накладки в форме рамки с дном, по меньшей мере одного слоя полимерного покрытия с противоскользящими и/или антистатическими свойствами, закрепленного на дне рамки, соединяемых между собой при помощи клея и/или механического соединения. Технический результат заявляемого изобретения заключается в обеспечении защиты палубного покрытия в местах наиболее интенсивного износа.
Недостатком является ограничение по площади применения, необходимость механического крепления накладок к основанию. Также возможность возникновения подпленочной коррозии при повреждении или износе покрытия до материала основы.
Известны высокотермостойкие нескользящие покрытия (RU 2011138384 А, МПК C23F 11/00, Опубликовано 10.04.2013 Бюл. №10). Композиция, включающая основу и отверждающий агент, которые при смешивании, нанесении на субстрат и отверждении образуют нескользящее покрытие, обладающее текстурой вспаханного поля, с исключительными механическими свойствами, коррозионной стойкостью и термостойкостью; где основа содержит от, примерно, 5 до, примерно, 20% вес. одной или более эпоксидной смолы и от, примерно, 10 до, примерно, 40% вес. одной или более кремнийорганической смолы; от, примерно, 40 до 85% вес. указанной основы составляют минеральные и/или керамические наполнители, волокна и/или агрегаты и функциональные добавки, при этом весовое отношение кремнийорганической смолы к эпоксидной смоле превышает 1:1; указанный отверждающий агент содержит от, примерно, 20 до, примерно, 55% вес. одного или более аминового функционального отверждающего агента и от, примерно, 45 до 80% вес. минеральных и/или керамических наполнителей и/или волокон и функциональных добавок; где нескользящее покрытие соответствует требованиям по ударной прочности стандарта MIL-PRF-24667C и по отверждении при температуре окружающей среды и после высокотемпературного воздействия при 260°С в течении 30 мин.
Недостатком является возможность возникновения подпленочной коррозии при повреждении или износе покрытия до материала основы. Необходимость нанесения многослойного покрытия. Сложность обеспечения при финальной термообработке 260°С в течении 30 мин на габаритных поверхностях.
Известно покрытие для металлических и железобетонных настилов (SU 175643 А1, МПК C09D 5/08, Опубликовано 09.10.1965, Бюл. №20) В данном изобретении предлагается покрытие из мастики, устраняющее скользкость металлических палуб судов и металлических настилов различного назначения, обладающее высокой износоустойчивостью, хорошим сцеплением с металлом и обеспечивающее длительное и надежное предохранение металлической поверхности от коррозии и механического износа. Покрытие представляет собой композицию мастики, приготовленную на основе сополимера стирола с нитрилакриловой кислотой и бутилакриловым каучуком (СППБС), растворенным в органическом растворителе, в сочетании с минеральными наполнителями и красителями.
Недостатком является возможность возникновения коррозии при повреждении или износе покрытия до материала основы. Процесс и подготовки мастики, ее нанесение являются экологически вредными и требует специальных мер предосторожности.
В качестве ближайшего аналога предлагается способ (US 5763070 А, МПК B05D5/02, Опубликовано 09.06.1998) получения нескользящего покрытия, включающий подготовку поверхности и нанесение полимерного покрытия.
Недостатком ближайшего аналога является возможность возникновения подпленочной коррозии при повреждении или износе покрытия до материала основы. Необходимость нанесения грунтовки и использование органического растворителя, необходимость сушки покрытия.
Задачей, на решение которой направлено заявляемое техническое решение, является разработка способа получения на металлической поверхности нескользящего покрытия с высокой шероховатостью, силой трения покоя и стойкостью к истиранию, необходимыми для обеспечения хороших сцепных свойств покрытия, отсутствия проскальзывания, безопасного перемещения персонала и технологического транспорта.
Технический эффект поставленной задачи состоит в:
- создании антикоррозионной защиты за счет металлического покрытия и дополнительной защиты конструктивных элементов, подвергающиеся широкому спектру нагрузок и воздействий, обуславливающих процессы трения, износа, коррозии;
- реализации создания полимерно-абразивного покрытия с последовательным нанесением слоев покрытия в рамках одного технологического процесса. Технология нанесения покрытий обеспечивает равномерность слоев, необходимую шероховатость сразу после нанесения, стабильность и высокую производительность процесса;
- отсутствии ограничений по площади нанесения;
- понижении энергозатрат на реализацию способа;
- повышении эксплуатационных характеристик (механическая стойкость к истиранию, высокая сила трения покоя за счет твердых включений в объеме покрытия) создаваемых покрытий и обеспечение требуемой продолжительности эксплуатации защищаемого изделия;
- данное покрытие имеют высокую шероховатость, износостойкость и, в отличии от лакокрасочных покрытий, защищают от развития подпленочной коррозии даже при повреждении.
Технический результат достигается тем, что подготовку поверхности проводят абразивно-струйной обработкой и затем последовательно наносят способом электродуговой металлизации металлического подслоя из алюминий-магниевого сплава толщиной 100-1000 мкм и слоя из полимерно-абразивной композиции толщиной 300-1000 мкм, инжектируя ее на предварительно подогретый газовым пламенем до температуры 150-200°С металлический подслой с сопутствующим подогревом газовым пламенем образующегося покрытия, причем в качестве полимерного материала используют термопластичный порошковый материал, а абразивный материал используют фракцией 0,1-3 мм„ после чего отключают инжектирование полимерно-абразивной композиции и проводят термообработку покрытия газовым пламенем до температуры плавления полимерной составляющей.
В получаемом полимерно-абразивном слое полимерный материал служит матрицей, а абразивный материал твердыми включениями, равномерно распределяемыми в матрице, и используются в соотношении 10:1 соответственно.
Металлический подслой состоит из алюминий-магниевого сплава с высокими антикоррозионными свойствами и стойкостью к морской воде, а также отрицательным, по отношению к конструкционным сталям электродным потенциалом. Металлический подслой имеет высокую адгезию к металлической поверхности порядка 5-20 МПа, которая со временем возрастает за счет диффузии металла покрытия в металл поверхности. Металлический слой является основой для нанесения полимерно-абразивного слоя.
Полимерно-абразивный слой состоит из полимерной матрицы, в которую интегрированы абразивные частицы, что обеспечивает надежное удержание частиц в процессе эксплуатации. Абразивные частицы, выступающие из полимерной матрицы, создают нескользящее покрытие с высокой шероховатостью и обеспечивают высокое сцепление покрытия с подошвой обуви и колесами технологического транспорта.
Отличительным признаком заявляемого технического решения является:
- последовательное нанесение металлического подслоя и полимерно-абразивного слоя в рамках одного технологического процесса без переналадки оборудования;
- получение нескользящего металлополимерного покрытия с требуемыми свойствами, за счет возможности использования различных термопластичных полимерных порошковых и абразивных материалов и изменения их концентрацию по объему покрытия;
- сочетание в создаваемом покрытии антикоррозионных свойств за счет металлического подслоя и механической стойкости к истиранию за счет твердых включений в объеме полимерной составляющей покрытия.
- термообработка полимерного покрытия газовым (пропан-воздушным) пламенем,
Способ получения нескользящего покрытия включает:
- нанесение на металлическую поверхность способом электродуговой металлизации металлического подслоя из алюминий-магниевого сплава для обеспечения антикоррозионных свойств и адгезии к металлической поверхности;
- нанесение на металлический подслой полимерно-абразивной композиции с сопутствующим подогревом газовым (пропан-воздушным) пламенем;
- термообработка покрытия газовым (пропан-воздушным) пламенем до температуры плавления полимерной составляющей;
- в качестве абразивного материала используют электрокорунд, оксид алюминия, карбид кремния или иные.
Для нанесения компонентов и слоев покрытия на металлическую поверхность применяется технология электродуговой металлизации. Нанесение слоев выполняется последовательно, без перерыва при использовании установки электродуговой металлизации, укомплектованной дополнительным комплектом для инжектирования полимерно-абразивной композиции и термообработки полимерной составляющей.
Согласно заявляемому способу на металлическую поверхность, подготовленную абразивно-струйной обработкой, наносится способом электродуговой металлизации металлический подслой из алюминий-магниевого сплава для обеспечения антикоррозионных свойств и адгезии к металлической поверхности. Далее металлизационная струя отключается и из форсунок, дополнительно установленных на пистолете металлизатора, запускается дополнительный нагрев металлического слоя газовым (пропан-воздушным) пламенем и инжектирование полимерно-абразивной композиции для создания нескользящего покрытия с высокой шероховатостью. После чего происходит отключение инжектирования полимерно-абразивной композиции и выполняется термообработка газовым (пропан-воздушным) пламенем, формируемым кольцевым контуром, дополнительно установленным на пистолете металлизатора, с последующей полимеризацией.
Пример 1
Металлическое покрытие напыляют с использованием электродугового металлизатора Thermach на образцы из стали 09Г2С. Поверхность под нанесение покрытия готовят абразивно-струйной обработкой. В качестве материалов для металлического слоя используют проволоку СвАМг5 (ГОСТ 7871-75) диаметром 1,6 мм, полимерно-абразивная композиция, включающая термопластичный порошок полиэтилен РНС-А и электрокорунд фракцией 0,5-1,0 мм. Давление воздуха на входе в металлизатор 0,5 МПа, дистанция напыления металлического подслоя 150-200 мм, ток дуги 200-250 А, напряжение 20-25 В. Толщина металлического слоя 200±50 мкм. Дистанция при нанесении полимерно-абразивной композиции 200-250 мм. Толщина полимерно-абразивного слоя 350±150 мкм.
Создаваемое нескользящее покрытие и технология его нанесения отличаются технологичностью, невысокой стоимостью, доступностью технологического оборудования, возможностью нанесения на различные поверхности, в том числе на поверхности объектов, находящихся в эксплуатации без их демонтажа. Полученные покрытия отличаются долговечностью и повышенной износостойкостью поверхностного слоя.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЯ С НИЗКОЙ ПОВЕРХНОСТНОЙ ЭНЕРГИЕЙ ПРОТИВ БИООБРАСТАНИЯ | 2020 |
|
RU2760600C1 |
СПОСОБ ЭЛЕКТРОДУГОВОГО НАПЫЛЕНИЯ ПОКРЫТИЯ | 2019 |
|
RU2715827C1 |
УСТРОЙСТВО ДЛЯ НАНЕСЕНИЯ МЕТАЛЛОПОЛИМЕРНОГО ПОКРЫТИЯ | 2019 |
|
RU2725785C1 |
СПОСОБ ПОЛУЧЕНИЯ АНТИКОРРОЗИОННОГО МЕТАЛЛОПОЛИМЕРНОГО ПОКРЫТИЯ | 2021 |
|
RU2789355C1 |
СПОСОБ ЗАЩИТЫ КОНТЕЙНЕРА ДЛЯ ТРАНСПОРТИРОВАНИЯ И/ИЛИ ХРАНЕНИЯ ОТРАБОТАННОГО ЯДЕРНОГО ТОПЛИВА (ВАРИАНТЫ) | 2015 |
|
RU2588003C1 |
СПОСОБ МЕТАЛЛИЗАЦИИ БЕТОНА | 2023 |
|
RU2812731C1 |
Способ реставрации художественных произведений и их элементов, выполненных из черного металла | 2017 |
|
RU2699691C2 |
СПОСОБ ВОССТАНОВЛЕНИЯ ШЕЕК СТАЛЬНЫХ КОЛЕНЧАТЫХ ВАЛОВ | 2008 |
|
RU2385211C2 |
ДЕТАЛЬ И СБОРОЧНАЯ ЕДИНИЦА СОПЛОВОГО АППАРАТА ТУРБИНЫ ВЫСОКОГО ДАВЛЕНИЯ | 2020 |
|
RU2746196C1 |
СПОСОБ ЗАЩИТЫ КОНТЕЙНЕРА ДЛЯ ТРАНСПОРТИРОВАНИЯ И/ИЛИ ХРАНЕНИЯ ОТРАБОТАВШЕГО ЯДЕРНОГО ТОПЛИВА (ВАРИАНТЫ) | 2014 |
|
RU2587682C2 |
Изобретение может быть использовано при нанесении покрытий на металлические поверхности трапов, лестниц, мостиков, пешеходных дорожек, автомобильных пандусов, вертолетных площадок, палуб судов. Способ получения нескользящего покрытия включает подготовку поверхности и нанесение полимерного покрытия. Подготовку поверхности проводят абразивно-струйной обработкой. Затем последовательно наносят способом электродуговой металлизации металлический подслой из алюминий-магниевого сплава толщиной 100-1000 мкм и слой из полимерно-абразивной композиции толщиной 300-1000 мкм, инжектируя ее на предварительно подогретый газовым пламенем до температуры 150-200°С металлический подслой с сопутствующим подогревом газовым пламенем образующегося покрытия. В качестве полимерного материала используют термопластичный порошковый материал. Абразивный материал используют фракцией 0,1-3 мм. После чего отключают инжектирование полимерно-абразивной композиции и проводят термообработку покрытия газовым пламенем до температуры плавления полимерной составляющей. Полученные покрытия отличаются повышенными эксплуатационными характеристиками, такими как механическая стойкость к истиранию, высокая сила трения покоя. 1 пр.
Способ получения нескользящего покрытия, включающий подготовку поверхности и нанесение полимерного покрытия, отличающийся тем, что подготовку поверхности проводят абразивно-струйной обработкой и затем последовательно наносят способом электродуговой металлизации металлический подслой из алюминий-магниевого сплава толщиной 100-1000 мкм и слой из полимерно-абразивной композиции толщиной 300-1000 мкм, инжектируя ее на предварительно подогретый газовым пламенем температуры 150-200°С металлический подслой с сопутствующим подогревом газовым пламенем образующегося покрытия, причем в качестве полимерного материала используют термопластичный порошковый материал, а абразивный материал используют фракцией 0,1-3 мм, после чего отключают инжектирование полимерно-абразивной композиции и проводят термообработку покрытия газовым пламенем до температуры плавления полимерной составляющей.
US 5763070 A1, 09.06.1998 | |||
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНОГО УПРОЧНЯЮЩЕГО ПОКРЫТИЯ НА ДЕТАЛЯХ ЗАПОРНОЙ АРМАТУРЫ | 2013 |
|
RU2543117C2 |
СПОСОБ НАНЕСЕНИЯ АЛЮМИНИЯ НА ПОВЕРХНОСТЬ МАТЕРИАЛА | 1993 |
|
RU2051199C1 |
СПОСОБ НАНЕСЕНИЯ МЕТАЛЛОПОЛИМЕРНОГО ПОКРЫТИЯ | 2015 |
|
RU2627543C2 |
СПОСОБ ПРЕДВАРИТЕЛЬНОЙ ОБРАБОТКИ ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЯ ИЛИ ПЕЧАТИ | 2016 |
|
RU2697046C2 |
Способ электродуговой металлизации | 1985 |
|
SU1359336A1 |
Авторы
Даты
2021-08-12—Публикация
2020-06-29—Подача