Устройство для измерения параметров работы сердца Российский патент 2021 года по МПК A61B5/24 A61B5/1455 

Описание патента на изобретение RU2760994C2

Область техники, к которой относится изобретение

Изобретение относится к измерительной технике, в частности к носимым оптико-электронным устройствам для измерения параметров работы сердца и может быть использовано для получения информации об изменении биопотенциалов сердца человека.

Уровень техники

Из уровня техники известно большое количество средств для измерения биопотенциалов работы сердца человека.

В качестве наиболее близкого аналога выбрано известное устройство для измерения параметров работы сердца, содержащее корпус, установленный внутри упомянутого корпуса источник питания, источник лазерного излучения, снабженный средством преобразования лазерного излучения в электрический сигнал (CN 102894965, опубликован 30.01.2013). Данное известное средство обладает недостаточной чувствительностью и точностью определения биопотенциалов сердца человека и не позволяет определить все пять пиков кардиограммы.

Сущность изобретения

Задача решаемая изобретением: создание носимого средства мониторинга за работой сердца и измерение параметров сердечной деятельности человека.

В ходе решения поставленной задачи обеспечивается достижение следующих технических результатов: повышение точности определения зубцов, сегментов и интервалов кардиограммы человека на протяжении длительного времени в ходе его обычной жизнедеятельности; одновременное фиксирование кардиографического отклика от тканей, обладающих различной чувствительностью к длине и/или поляризации лазерного излучения; обеспечение возможности интегрирования устройства в информационные системы на основе облачного хранения информации.

Указанные выше технические результаты достигаются тем, что устройство для измерения параметров работы сердца содержит корпус, снабженный средством крепления на теле человека, установленные внутри упомянутого корпуса источник питания, по крайней мере, два источника лазерного излучения, каждый из которых снабжен средством преобразования лазерного излучения в электрический сигнал, несущий информацию о параметрах работы сердца, блок памяти для записи информации о работе сердца и блок передачи информации о параметрах работы сердца.

Указанные выше технические результаты достигаются также тем, что упомянутые источники лазерного излучения выполнены диодными, при этом один их них имеет длину волны от 540 нм до 550 нм, а второй - от 560 нм до 570 нм.

Указанные выше технические результаты достигаются также тем, что дополнительно содержит вторую пару диодных источников лазерного излучения с длинами волн от 520 нм до 528 нм и от 532 нм до 540 нм соответственно.

Указанные выше технические результаты достигаются также тем, что один из источников лазерного излучения, образующих пару, обеспечивает продольную поляризацию, а второй - поперечную.

Указанные выше технические результаты достигаются также тем, что снабжено дисплеем для отображения визуальной информации.

Указанные выше технические результаты достигаются также тем, что упомянутый блок передачи информации выполнен в виде модуля беспроводной персональной сети (WPAN).

Указанные выше технические результаты достигаются также тем, что упомянутый модуль беспроводной персональной сети (WPAN) выполнен в виде модуля Bluetooth.

Указанные выше технические результаты достигаются также тем, что содержит модуль генерации импульсов, обеспечивающий импульсное лазерное излучение с максимальной частотой 300 импульсов в секунду.

Указанные выше технические результаты достигаются также тем, что упомянутый модуль генерации импульсов выполнен адаптивным с возможностью изменения частоты импульсов от 20 до 300 импульсов в секунду.

Указанные выше технические результаты достигаются также тем, что упомянутый блок памяти снабжен средством сжатия измерительной информации.

Указанные выше технические результаты достигаются также тем, что упомянутое средство крепления обеспечивает установку устройства на запястье пациента в виде браслета.

Указанные выше технические результаты достигаются также тем, что снабжено средством измерения кровяного давления пациента.

Указанные выше технические результаты достигаются также тем, что упомянутое средство преобразования лазерного излучения в электрический сигнал выполнено в виде ПЗС элемента.

Указанные выше технические результаты достигаются также тем, что содержит средства трех каскадного усиления сигнала с фильтрами нижний, высокий, нижний.

Указанные выше технические результаты достигаются также тем, что содержит, по крайней мере, одно средство измерения температуры.

Отличительной особенностью настоящего изобретения является наличие, по крайней мере, двух источников лазерного излучения с различной длиной волны, при этом каждый источник снабжен своим собственным средством регистрации отраженного излучения.

Краткий перечень фигур чертежей

На Фиг. 1 показан общий внешний вид устройства.

На Фиг. 2 и 3 показана структура устройства при различном количестве излучателей.

На Фиг. 4 показан схема взаимодействия излучателя и регистратора отраженного сигнала.

На Фиг. 5 показана связь отраженных импульсов с элементами кардиограммы.

Осуществление изобретения

Заболевания сердца в последние десятилетия вышли на первый план причин смертности и инвалидности. В связи с этим задача разработки новых методов диагностики и мониторинга сердечной деятельности становится все более актуальной. Информация о параметрах сердечной деятельности является основой для оценки состояния как отдельных органов, так и целых систем жизнедеятельности человека: нервной системы, адаптивных возможностей, систем регуляции и пр. Существуют многочисленные диагностические методики психофизиологического состояния, основанные на анализе вариабельности сердечного ритма. В то же время любая методика, построенная на анализе сердечного ритма, нуждается в эффективных средствах получения точной первичной измерительной информации о параметрах сердечной деятельности.

Одним из наиболее распространенных способов получения первичной измерительной информации является

электрокардиограмма (ЭКГ). Как известно, электрокардиограмма (ЭКГ) - периодически повторяющаяся кривая биопотенциалов сердца, отражающая протекание процесса возбуждения сердца, возникшего в синусном (синусно-предсердный) узле и распространяющегося по всему сердцу, регистрируемая с помощью электрокардиографа. Отдельные ее элементы - зубцы, сегменты и интервалы - имеют специальные наименования:

- зубцы Р, Q, R, S, Т

- интервалы PQ, QRS, QT, RR;

- сегменты PQ, ST, TP.

Они характеризуют возникновение и распространение возбуждения по предсердиям (Р), межжелудочковой перегородке (Q), постепенное возбуждение желудочков (R), максимальное возбуждения желудочков (S), реполяризацию желудочков (S) сердца. Зубец Р отражает процесс деполяризации обоих предсердий, комплекс QRS - деполяризацию обоих желудочков, а его длительность - суммарную продолжительность этого процесса. Сегмент ST и зубец Г соответствуют фазе реполяризации желудочков. Продолжительность интервала PQ определяется временем, за которое возбуждение проходит предсердия. Продолжительность интервала QR-ST- длительность «электрической систолы» сердца; она может не соответствовать длительности механической систолы.

ЭКГ получают с помощью электрокардиографа - аппарата, предназначенного для отображения работы отделов сердца, путем регистрации кривой. Он позволяет оперативно снимать ЭКГ: регистрирует и измеряет разности потенциалов сердца с поверхности тела человека, при помощи наложения электродов. Может работать как в ручном, так и в автоматическом режиме. Как правило, функционал аппарата зависит от области применения, однако абсолютно все устройства должны отвечать требованию высокого качества регистрируемой электрокардиограммы. Качественную ЭКГ в любых условиях позволяют получить специальные фильтры.

Широкое распространение в медицине электрокардиограф получил благодаря своему относительно простому устройству и несложным методам работы. Он абсолютно безопасен и не создает никакого дискомфорта или неудобства для больного.

Однако существующие технологии получения ЭКГ с помощью электрокардиографа мало пригодны для систем длительного мониторинга и наблюдения за состоянием пациента. Оборудование для ЭКГ энергозатратно, массивно и сложно обеспечить его надежную фиксацию на теле пациента в условиях сохранения обычной подвижности. Задачей настоящего изобретения является создание надежного и эффективного средства для измерения и мониторинга всех параметров, необходимых для полноценного анализа сердечной деятельности (интенсивность зубцов Р, Q, R, S, Т). Полученная с помощью данного изобретения информация позволяет автоматизировать расчет и анализ комплекса QRS, частоты сердечных сокращения, интервалов Q-T, Т-Р, S-T и пр.

Изобретение основано на том, что способность красных кровяных телец отражать когерентное излучение зависит от длины волны излучения и фазы работы сердца. Интенсивность отраженных волн пропорциональная количеству красных кровяных телец, попавших в зону облучения лазерным диодом. Таким образом, в каждый момент времени существует корреляционная связь между значением биопотенциала сердца и интенсивностью волны, отраженной от тела пациента.

Как показано на Фиг. 1 устройство для измерения параметров работы сердца содержит корпус 1, снабженный средством 2 крепления на теле пациента. Устройство может быть снабжено дисплеем 12 для отображения информации о параметрах работы сердца, а также и другой информации, например, времени, даты и др.

Наиболее целесообразно устанавливать устройство на запястье пациента в зоне максимального проявления пульса. Средство 2 крепления может быть выполнено в виде ремешка, как показано на Фиг. 1. В этом случае устройство устанавливается на запястье пациента в виде браслета.

Внутри корпуса 1 установлен источник 3 питания, по крайней мере, два источника лазерного излучения 4 и 5. Как показано на Фиг. 2 каждый источник лазерного излучения снабжен средством преобразования лазерного излучения в электрический сигнал, несущий информацию о параметрах работы сердца пациента (позиции 6 и 7).

В корпусе 1 установлены также блок 8 памяти для записи информации о работе сердца и блок 9 передачи информации о параметрах работы сердца во внешние системы обработки и хранения информации, например в облачное хранилище.

Предпочтительно устройство может содержать пару диодных источников 4 и 5 лазерного излучения с длинами волн от 540 нм до 550 нм и от 560 нм до 570 нм.

Молекулярные соединения компонентов крови (например, гидроксильных групп в составе гемоглобина и пр.) обладают различными значениями собственных частот и различной способностью отражать оптическое излучение. Кроме этого, компоненты крови и элементы тканей в теле человека могут занимать различное пространственное положение в разлные моменты времени. Суть изобретения состоит в одновременном облучении тканей тела пациента когерентным излучением с двумя различными значениями длины волны. В этом случае, излучение с одной длиной волны получит максимальный отклик (в виде отраженной волны) от одной части молекулярных соединений и элементов тканей, а излучение с другой длиной волны обеспечит максимальный отклик от другой части молекулярных соединений и элементов. Сложив полученные значения отраженных сигналов, можно получить наиболее точное соответствие с фактическим значением биопотенциала сердца в каждый момент времени.

Устройство дополнительно может содержать вторую пару диодных источников 10 и 11 (Фиг. 3) лазерного излучения с длинами волн от 520 нм до 528 нм и от 532 нм до 540 нм. Каждый из дополнительных источников 10 и 11 лазерного излучения снабжен собственным средством (позиции 18 и 19) преобразования лазерного излучения в электрический сигнал, несущий информацию о параметрах работы сердца пациента. Дополнительные пары источник-приемник увеличивают точность измерения отраженного сигнала за счет еще большего охвата отклика молекулярных соединений, увеличения динамического диапазона и увеличение ширины спектрального анализа.

Целесообразно, чтобы один источник лазерного излучения в паре обеспечивал продольную поляризацию, а второй - поперечную. Это объясняется тем, что красные кровяные тельца в теле имеют различное расположение в пространстве. Наибольшая точность метода достигается в том случае, когда поляризация излучения совпадает с длиной кровяных телец. Это позволяет исключить влияние внешней засветки и получить, после математической обработки, более качественный общих сигнал путем сложения двух независимых кривых интенсивности отраженного сигнала, полученного от телец, имеющих различную пространственную ориентацию.

Блок 9 передачи информации о параметрах работы сердца выполнен в виде модуля беспроводной персональной сети (WPAN), например, стандарта Bluetooth.

Метод, используемый в настоящем изобретении, позволяет получить с необходимой точностью информацию при постоянном излучении источников 4, 5 и 10, 11. Однако, при постоянном режиме быстро расходуется заряд источника питания при том, что для последующей цифровизации полученный отраженный сигнал необходимо дескретизироовать, квантовать и пр. В случае использования постоянного режима работы излучателей, устройство может быть снабжено аналого-цифровым преобразователем (например, обладающим разрядностью 24 бит и рабочим диапазоном от 1В до 3В). Это позволит преобразовывать измерительную информацию в цифровую форму и обрабатывать ее с помощью процессора 17.

Наиболее целесообразно сразу обеспечить импульсный режим работы излучателей и преобразователей 6, 7. С этой целью устройство предпочтительно содержит блок 13 генерации импульсов, обеспечивающий импульсное лазерное излучение с максимальной частотой до 300 импульсов в секунду. Импульсный режим увеличивает срок работы прибора за счет уменьшенного энергопотребления, обеспечивает фильтрацию теневого измерения, сокращает время воздействия на ткани тела пациента.

Блок 13 генерации импульсов может быть выполнен адаптивным с возможностью изменения частоты импульсов от 30 до 300 импульсов в секунду с длительностью от 1 мкс до 33 мс. Это улучшает точность выставления экспозиции и своевременную реакцию прибора на отклонения от нормы.

Блок 8 памяти снабжен средством сжатия измерительной информации. Для этого можно использовать фильтр Вейвлет и алгоритм Хаффмана кодирования, который позволит при малом энергопотреблении записывать большие данных для обработки на удаленных серверах.

Устройство дополнительно может быть снабжено средством 14 измерения кровяного давления и средством 16 измерения температуры пациента. В качестве средства 14 целесообразно использовать пьезоэлектрические генераторы малой мощности, которые в результате колебаний от соприкосновения, вырабатывают регистрирующее напряжение от пульсовой волны, вторичным является так же регистрация пульсовой волны.

Средство преобразования лазерного излучения в электрический сигнал целесообразно выполнить в виде ПЗС элемента с оптическим фильтром с рабочим диапазоном частот от 515 нм до 570 нм. Тем самым убираются ненужные частоты, которые могу возникнуть в результате неправильного прилегания устройства или засветки. Это обеспечит, в свою очередь, более стабильный отклик системы в независимости от внешних помех и теневого тока.

Устройство может содержать средства 15 трехкаскадного усиления сигнала с фильтрами нижних, высоких и нижних частот, соединенных в прямой последовательности. Оптимальный коэффициент усиления сигнала составляет от 10 дБм до 18 дБм.

Устройство работает следующим образом:

Как показано на Фиг. 5, блок 13 генерации импульсов формирует прямоугольные импульсы заданной длительностью b от 1 мксек до 1 мсек с частотой F до 300 Гц и мощностью до 20 мВт и направляет их на источники лазерного излучения 4 и 5.

Лазерный луч падает на ткани 21 тела пациента и, отразившись от них (в том числе от красных кровяных телец) 20, луч улавливается средствами (позиция 6) преобразования лазерного излучения (фотоприемником) в электрический сигнал, как показано на Фиг. 4. Таким образом осуществляется регистрация отраженного излучения, несущего информацию о параметрах работы сердца.

От фотоприемника сигнал усиливается на трехкаскадном усилителе с осуществлением последующей фильтрации сигнала.

При постоянном режиме работы излучателей устройство снабжено процессором 17 и сигнал предварительно поступает на аналого-цифровой преобразователь и далее оцифрованный сигнал поступает в процессорный блок.

Для получения коэффициентов поглощения и выделения более точного времени поступления отраженного сигнала обеспечивается восстановление прямоугольной формы сигнала.

При использовании адаптивных алгоритмов, частота и длительность последующего измерительного импульса может определяться на основе различных интегральных параметров, например в зависимости от интенсивности предыдущего зарегистрированного импульса. Это позволяет, например увеличить частоту и мощность импульсов в моменты нестабильной работы сердца для получения более точной биоинформации.

Сигнал анализируется, сжимается и отправляется в блок памяти 6 и через блок 7 на смартфон пользователя и далее на сервер хранения и обработки информации.

Расчет собственно кардиограммы может производиться путем разложения полученной последовательности интенсивности отраженного сигнала в ряд Фурье с фильтрацией низких частот с последующим обратным преобразованием для восстановления искомого значения.

Как показано на Фиг. 5, отраженные импульсы несут информацию о значениях биопотенциала сердца. Регистрация и обработка отраженных импульсов позволяет с высокой точностью определить все параметры, присущие ЭКГ и передать эти данные для хранения, обработки и анализа в любые компьютеризированные системы, как в пределах одного лечебного учреждения, так и между различными учреждениями, объединенных общей сетью или имеющих доступ к хранилищу данных о пациенте.

Похожие патенты RU2760994C2

название год авторы номер документа
Способ определения параметров работы сердца и электронное устройство для его осуществления 2018
  • Орлов Дмитрий Владимирович
RU2760990C2
Способ определения параметров работы сердца, система и электронное устройство для его осуществления 2018
  • Бабченко Юрий Викторович
  • Орлов Дмитрий Владимирович
RU2744967C2
СИСТЕМА И СПОСОБ ДИСТАНЦИОННОГО КОЛИЧЕСТВЕННОГО ОБНАРУЖЕНИЯ УТЕЧЕК ФЛЮИДА В ТРУБОПРОВОДЕ ПРИРОДНОГО ГАЗА ИЛИ НЕФТИ 2004
  • Калайех Хушманд М.
  • Паз-Пуджалт Густаво Р.
  • Спунхауэр Джон П.
RU2362986C2
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛИЯНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ НА ПСИХОФИЗИОЛОГИЧЕСКОЕ СОСТОЯНИЕ ПАЦИЕНТА (ВАРИАНТЫ) 2016
  • Иванова Лилия Георгиевна
  • Бабченко Юрий Викторович
  • Фрай Александра Владимировна
  • Бабченко Алексей Юрьевич
RU2636199C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛИЯНИЯ ЛЕЧЕБНЫХ ИЛИ ОЗДОРОВИТЕЛЬНЫХ ПРОЦЕДУР НА ПСИХОФИЗИОЛОГИЧЕСКОЕ СОСТОЯНИЕ ПАЦИЕНТА (ВАРИАНТЫ) 2016
  • Иванова Лилия Георгиевна
  • Бабченко Юрий Викторович
  • Гетман Фёдор Игоревич
  • Фрай Александра Владимировна
  • Бабченко Алексей Юрьевич
RU2636198C2
УСТРОЙСТВО И СПОСОБ ИЗМЕРЕНИЯ КРОВЯНОГО ДАВЛЕНИЯ 2016
  • Виленский Максим Алексеевич
  • Попов Михаил Вячеславович
  • Клецов Андрей Владимирович
  • Чо Чжэгол
  • Зимняков Дмитрий Александрович
  • Ювченко Сергей Алексеевич
RU2648029C2
БЕСКОНТАКТНОЕ НАБЛЮДЕНИЕ ДЫХАНИЯ У ПАЦИЕНТА И ОПТИЧЕСКИЙ ДАТЧИК ДЛЯ ИЗМЕРЕНИЯ МЕТОДОМ ФОТОПЛЕТИЗМОГРАФИИ 2009
  • Пинтер, Роберт
  • Мюльстефф, Йенс
  • Шпековиус, Герхард
  • Юй, Дунхай
  • Девот, Сандрин, М., Л.
  • Мюш, Гвидо, Й.
  • Обер, Ксавье, Л., М., А.
RU2511278C2
Система и способ для безманжетного определения артериального давления 2017
  • Брендель Вадим Михайлович
  • Ежков Александр Викторович
  • Ларионов Виталий Борисович
  • Садовский Сергей Павлович
  • Сунцова Ольга Валерьевна
RU2759708C1
СИСТЕМА КОНТРОЛЯ ПОЛОЖЕНИЯ ДИСТАЛЬНОГО КОНЦА ТРУБКИ ОТНОСИТЕЛЬНО КРОВЕНОСНОГО СОСУДА 2011
  • Ренсен Юдит Маргрет
  • Ренсен Ваутер Харри Якинт
RU2567593C2
Твердотельная лазерная установка с диодной накачкой для лечения сосудистых образований кожи и подкожной клетчатки 2016
  • Сироткин Анатолий Андреевич
  • Кузьмин Геннадий Петрович
  • Горбатова Наталья Евгеньевна
  • Золотов Сергей Александрович
RU2644690C1

Иллюстрации к изобретению RU 2 760 994 C2

Реферат патента 2021 года Устройство для измерения параметров работы сердца

Изобретение относится к медицинской технике, а именно к носимому устройству для измерения параметров работы сердца. Устройство содержит корпус, который снабжен средством крепления на теле человека, установленный внутри корпуса источник питания, два диодных источника лазерного излучения. Один из диодных источников имеет длину волны от 540 нм до 550 нм, другой - от 560 нм до 570 нм. Каждый из диодных источников снабжен средством преобразования отраженного от тела человека лазерного излучения в электрический сигнал, несущий информацию о параметрах работы сердца. Устройство дополнительно содержит вторую пару диодных источников лазерного излучения. При этом один из них имеет длину волны от 540 нм до 550 нм, а другой - от 560 нм до 570 нм. Один из источников лазерного излучения, образующих пару, обеспечивает продольную поляризацию, а второй – поперечную. Устройство содержит блок памяти для записи информации о работе сердца и блок передачи информации о параметрах работы сердца. За счет использования лазерных источников с различными длинами волн и различной поляризации достигается повышение точности исследования, поскольку, таким образом, исключается влияние внешней засветки и после математической обработки получается более качественный общий сигнал путем сложения двух независимых кривых интенсивности отраженного сигнала, полученного от красных кровяных телец, имеющих различную пространственную ориентацию. 10 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 760 994 C2

1. Носимое устройство для измерения параметров работы сердца, содержащее

- корпус, снабженный средством крепления на теле человека, установленные внутри упомянутого корпуса источник питания, образующие первую пару два диодных источника лазерного излучения, один из которых имеет длину волны от 540 нм до 550 нм, другой - от 560 нм до 570 нм и каждый из них снабжен средством преобразования отраженного от тела человека лазерного излучения в электрический сигнал, несущий информацию о параметрах работы сердца,

- устройство дополнительно содержит вторую пару диодных источников лазерного излучения, один из которых имеет длину волны от 540 нм до 550 нм, а другой - от 560 нм до 570 нм,

- один из источников лазерного излучения, образующих пару, обеспечивает продольную поляризацию, а второй - поперечную,

- устройство содержит блок памяти для записи информации о работе сердца и блок передачи информации о параметрах работы сердца,

2. Устройство по п. 1, отличающееся тем, что упомянутый блок передачи информации выполнен в виде модуля беспроводной персональной сети (WPAN), один их источников лазерного излучения в первой паре имеет длину волны от 540 нм до 550 нм, другой - от 560 нм до 570 нм, а один их источников лазерного излучения во второй паре имеет длину волны от 540 нм до 550 нм, а другой - от 560 нм до 570 нм.

3. Устройство по п. 2, отличающееся тем, что упомянутый модуль беспроводной персональной сети (WPAN) выполнен в виде модуля Bluetooth.

4. Устройство по п. 1, отличающееся тем, что содержит модуль генерации импульсов, обеспечивающий импульсное лазерное излучение с максимальной частотой 300 импульсов в секунду.

5. Устройство по п. 4, отличающееся тем, что упомянутый модуль генерации импульсов выполнен адаптивным с возможностью изменения частоты импульсов от 20 до 300 импульсов в секунду.

6. Устройство по п. 1, отличающееся тем, что упомянутый блок памяти снабжен средством сжатия измерительной информации.

7. Устройство по п. 1, отличающееся тем, что упомянутое средство крепления обеспечивает установку устройства на запястье пациента в виде браслета.

8. Устройство по п. 1, отличающееся тем, что снабжено средством измерения кровяного давления пациента.

9. Устройство по п. 1, отличающееся тем, что упомянутое средство преобразования лазерного излучения в электрический сигнал выполнено в виде ПЗС элемента.

10. Устройство по п. 1, отличающееся тем, что содержит средства трехкаскадного усиления сигнала с фильтрами нижний, высокий, нижний.

11. Устройство по п. 1, отличающееся тем, что содержит по крайней мере одно средство измерения температуры.

Документы, цитированные в отчете о поиске Патент 2021 года RU2760994C2

US 2014148658 A1, 29.05.2014
RU 2012121174 A, 27.11.2013
US 2017188858, 06.07.2017
US 2017224257 A1, 10.08.2017
US 2014288435 A1, 25.09.2014
WO 2018049531 A1, 22.03.2018
US 2015190078 A1, 09.07.2015.

RU 2 760 994 C2

Авторы

Орлов Дмитрий Владимирович

Бабченко Юрий Викторович

Даты

2021-12-02Публикация

2018-08-01Подача