Способ нанесения защитного покрытия на металлический кокиль для литья медных сплавов Российский патент 2022 года по МПК C23C14/06 C23C14/28 C23C14/50 

Описание патента на изобретение RU2767970C1

Изобретение относится к литейному производству и может быть применено для повышения стойкости металлического кокиля для литья медных сплавов.

Известен «Способ получения теплозащитного покрытия на металлической форме для отливки деталей из алюминиевых сплавов» (патент РФ № 1678508, B22C23/02, опубл. 1991.23.09). В предлагаемом способе формообразующая поверхность металлической формы для отливки деталей из алюминиевых сплавов в вакуумной камере подвергается нагреву и очистке от следов масел и окислов, методом катодно-ионной бомбардировки (КИБ). После нагрева и очистки поверхности металлической формы на нее напыляют сначала металлический подслой, температура плавления которого выше температуры плавления формы, а затем на металлический подслой наносят защитный слой керамики, нейтральной к металлу отливаемых деталей. Подслой напыляют из металла, имеющего коэффициент линейного расширения, меньший, чем у материала формы, но больший, чем у керамического покрытия.

К недостаткам данного способа можно отнести:

- повышенную трудоемкость и сложность, связанные с тем, что все слоя покрытия наносятся различными методами;

- использование покрытия исключительно для алюминиевых сплавов;

- повышенная хрупкость поверхностного керамического слоя покрытия;

- малая адгезия с материалом пресс-формы ввиду разнородности наносимых слоев покрытия.

Наиболее близким техническим решением, принятым за прототип, является «Способ нанесения защитного покрытия на пресс-форму для литья под давлением» (патент РФ № 2569870, C23C 14/24, B22C 23/02, опубл. 27.11.2015). В предлагаемом способе проводят предварительный нагрев и очистку формообразующей поверхности металлической пресс-формы методом катодно-ионной бомбардировки. На предварительно очищенную формообразующую поверхность металлической пресс-формы наносят слой толщиной 2 мкм из карбонитрида молибдена для адгезионной связи покрытия с металлической поверхностью пресс-формы. Затем поверх нижнего слоя наносят промежуточный слой толщиной 3 мкм из нитрида титана, обеспечивающий высокую твердость всего покрытия. Далее наносят верхний слой толщиной 2 мкм из нитрида молибдена. Нанесение всех слоев осуществляют методом катодно-ионной бомбардировки в вакуумной камере, при этом покрываемую формообразующую поверхность пресс-формы располагают на вращающейся основе, рядом с которой в одной горизонтальной плоскости напротив друг друга устанавливают катоды, испарение которых осуществляют с помощью электрической дуги в испарителе с одновременным действием ионного излучателя в среде реакционного газа.

Можно выделить следующие недостатки описанной формы, влияющие на эксплуатационный ресурс:

- слабое сопротивление защитного покрытия температурным напряжениям, возникающим в результате температурных перепадов при литье медных сплавов;

- относительно большая толщина промежуточного слоя, приводящая к появлению температурных напряжений.

Предлагаемое изобретение направлено на устранение недостатков, присущих аналогам и прототипу.

Решаемой технической проблемой является создание металлического кокиля для литья медных сплавов с многослойным защитным покрытием, с улучшенными эксплуатационными свойствами.

Техническим результатом заявляемого изобретения является повышение эксплуатационного ресурса металлического кокиля для литья медных сплавов.

Технический результат достигается тем, что на предварительно очищенную формообразующую поверхность металлического кокиля методом катодно-ионной бомбардировки наносят слой толщиной 1,5 мкм твердостью 52-55 HRC из нитрида титана для адгезионной связи покрытия с поверхностью металлического кокиля, затем поверх нижнего слоя наносят промежуточный слой толщиной 1 мкм твердостью 61-63 HRC из карбонитрида металлов титана и молибдена для обеспечения высокой твердости всего покрытия, далее наносят верхний слой толщиной 2 мкм твердостью 53-57 HRC из нитрида молибдена, при чем нанесение всех слоев осуществляется методом катодно-ионной бомбардировки в вакуумной камере, при этом покрываемую формообразующую поверхность кокиля располагают на вращающейся основе, рядом с которой в одной горизонтальной плоскости напротив друг друга установлены катоды, испарение которых осуществляют с помощью электрической дуги в испарителе с одновременным действием ионного излучателя в среде реакционного газа.

Новизной данного изобретения являются:

– использование метода катодно-ионной бомбардировки для нанесения слоев покрытия на формообразующую поверхность кокиля для литья медных сплавов;

– состав покрытия для формообразующих поверхностей кокиля для литья медных сплавов.

Техническая сущность способа.

При литье в кокиль формообразующие поверхности металлического кокиля 1 (фиг.1) испытывают значительные воздействия со стороны заливаемого расплава, приводящие к дефектам различного рода на поверхности и в теле кокиля. Среди них, наиболее распространенными являются трещины разгара, возникающие в результате действия термических напряжений. Поэтому при литье медных сплавов с высокой температурой плавления, таких как бронза и латунь, вопрос повышения теплостойкости кокиля является актуальным. В указанных условиях многослойное защитное покрытие, состоящее из следующих слоев: нитрид титана 2, карбонитрид металлов титана и молибдена 3 и нитрид молибдена 4, должно обладать рядом преимуществ, выделяющих его на фоне других возможных решений. Данное покрытие обладает повышенной износостойкостью и прочностью, как и существующие аналоги. Стоит отметить, что высокая износостойкость и твердость, а также высокая прочность сцепления должна соответствовать всем слоям покрытия, помимо этого каждый слой должен выполнять определенные, соответствующие ему свойства. Согласно теоретических рекомендаций [Гавариев, Р.В. К вопросу литья сплавов цветных металлов в металлические формы // Вестник Казанского государственного технического университета им. А.Н. Туполева. - 2018. - Т. 74. - № 2. - С. 56-60] положительные свойства слоев суммируются и образуют совокупность положительных свойств для всего покрытия, поэтому для процесса литья в кокиль должны быть обеспечены следующие условия: нижний слой должен обеспечивать максимальную прочность сцепления покрытия с материалом кокиля, средний должен обладать максимальной микротвердостью, а верхний минимальным коэффициентом трения. При этом, за счет подбора оптимального состава, а также величины твердости и толщины каждого слоя возможно обеспечение высоких показателей по уровню теплостойкости [Гавариев, Р.В. К вопросу проектирования кокилей / Р.В. Гавариев, Д.Л. Панкратов // Вестник Казанского государственного технического университета им. А.Н. Туполева. - 2020. - Т. 76. - № 2. - С. 63-67]. Каждый отдельный слой покрытия обладает своим, отличным от других, коэффициентом температурного расширения (KТР). Поэтому, при воздействии тепловых факторов, возможно появление растягивающих напряжений, которые приведут к появлению трещин. Однако, если слои расположить, таким образом, что каждый последующий слой, начиная от поверхности кокиля, будет обладать меньшим значением KТР, то напряжения будут сжимающими, что обеспечит целостность поверхности покрытия, что и было реализовано в предлагаемом покрытии.

Процесс нанесения покрытий на формообразующую поверхность металлического кокиля, расположенного на вращающемся основании 6 (фиг.2) производится методом катодно-ионной бомбардировки на установке типа «Булат» в вакуумной камере 5 с двумя катодами 7 из титана и молибдена горизонтально расположенными в испарителе 8 горизонтально в одной плоскости напротив друг друга. Перед нанесением слоев, покрываемую деталь пресс-формы бомбардируют ионами при помощи ионного излучателя 9 для очистки формообразующей поверхности от инородных частиц. Весь процесс нанесения покрытия происходит в среде реакционного газа 10.

Физическая сущность процесса заключается в адгезионной связи двух разнородных тел, при этом процесс проходит за две стадии: на первой происходит сближение поверхностей, а затем образование химических связей на уровне атомов. Инертные в обычных условиях тела активируются каким-либо способом: термическим, механическим, радиационным, то есть подводом энергии. При этом разрушаются поверхностные пленки и электронные конфигурации. После чего происходит сближение двух фаз за счет сил Ван дер Вальса, это приводит к перекрытию электронных оболочек поверхностных атомов. Высвобождающиеся при этом атомы участвуют в образовании новых конфигураций с уже различными кристаллами. Так происходит взаимопроникновение различных материалов на атомарном уровне, что обеспечивает повышенный уровень адгезии.

Процесс нанесения покрытия проходит при следующих рабочих параметрах: давление в рабочей камере достигает 4,9*10 Па, температура разогрева кокиля - 330ºС, ток соленоида 3,8 А, напряжение на аноде 1200 В, ток анода 0,15 А.

Сравнение показателей стойкости различных покрытий осуществлялось при помощи многофакторного эксперимента процесса литья в кокиль детали из сплава БрАЖ9-4. Суть процесса литья в кокиль заключается в том, что в кокиле имеется формообразующая поверхность, в которую подается расплав. Застывая, наружная поверхность получаемой отливки принимает форму, соответствующей формообразующей поверхности. Для эксперимента был изготовлен кокиль с несколькими формообразующими поверхностями с использованием различных способов повышения стойкости изделий, таких как: азотирование, цианирование, описываемый в прототипе и предлагаемый в данной заявке способ, при котором на предварительно очищенную формообразующую поверхность металлического кокиля методом катодно-ионной бомбардировки наносят слой толщиной 1,5 мкм твердостью 52-55 HRC из нитрида титана для адгезионной связи покрытия с поверхностью металлического кокиля, затем поверх нижнего слоя наносят промежуточный слой толщиной 1 мкм твердостью 61-63 HRC из карбонитрида металлов титана и молибдена для обеспечения высокой твердости всего покрытия, далее наносят верхний слой толщиной 2 мкм твердостью 53-57 HRC из нитрида молибдена. При этом, были получены следующие показатели стойкости: азотированная и цианированная формообразующие поверхности показали примерно одинаковые значения, равные примерно 5000 циклам запрессовок, формообразующая поверхность, изготовленная по способу, описанному в прототипе показала значение стойкости в 6300 циклов, наибольший результат соответствовал формообразующей поверхности, с покрытием предлагаемом в данной заявке – 7500 циклов, что в 1,2 раза больше, чем у прототипа. Прочность сцепления покрытия с материалом кокиля определялась при помощи механического адгезиметра elcometer 506, при этом, согласно методике производственных испытаний на основе 5 измерений количественная величина составила 47 МПа, при этом образец с покрытием указанным в прототипе показал значение в 46 МПа. Измерение твердости покрытия осуществлялось с использованием алмазной пирамидки при помощи микротвердомера ПМТ-3, полученное значение твердости покрытия составило 60 HRCэ, что примерно соответствует показателям прототипа. Измерение коэффициента трения на формообразующей поверхности пресс-формы является весьма сложной задачей, как с практической, так и с теоретической точки зрения, поэтому оценку данного показателя производили на основе изучения косвенных признаков, таких как шероховатость формообразующей поверхности, качество поверхности получаемых отливок, наличие пористости в получаемых отливках. На основе измерений были получены следующие результаты: шероховатость формообразующей поверхности кокиля после нанесения покрытия не изменилась и составила Ra=0,2 мкм, общий объем газовых пор в получаемых отливках не превышал 0,7% от общего объема, качество поверхности полученных отливок, удовлетворяло требованиям ГОСТ 26645-85, при этом параметры отливок полученных в кокиле, изготовленном по способу предложенному в прототипе были хуже, так, шероховатость формообразующей поверхности составила Ra=0,2 мкм, общий объем газовых пор – 0,6 %. Указанные значения косвенных параметров указывают на то, что в потоке расплавленного металла по формообразующей поверхности с многослойным защитным покрытием, предложенном в данной заявке не возникало дополнительных завихрений, вызванных поверхностным слоем, таким образом можно сказать, что предлагаемое покрытие обладает низким коэффициентом трения, в том числе по сравнению с прототипом.

Предлагаемый способ нанесения покрытия на кокиль для литья медных сплавов по сравнению с аналогами:

1. Повышает износостойкость формообразующих поверхностей кокиля за счет нанесения многослойного покрытия, каждый слой которого выполняет определенную функцию.

2. Повышает теплостойкость формообразующей поверхности кокиля.

3. Повышает качество получаемых отливок за счет уменьшения коэффициента трения между формообразующей поверхностью и потоком расплавленного металла.

4. Использование преимуществ дорогостоящих материалов таких как: титан, молибден, при их мизерной массовой доли от массы всего кокиля.

5. Нанесение всех слоев покрытия происходит на одной установке.

6. Толщина наносимого покрытия составляет не более 4,5 мкм, что позволяет не вносить значительных поправок при проектировании кокиля.

Похожие патенты RU2767970C1

название год авторы номер документа
Способ нанесения защитного покрытия на металлическую форму для литья алюминиевых сплавов 2022
  • Гавариев Ренат Вильсорович
  • Савин Игорь Алексеевич
  • Файрузова Зульфия Равилевна
RU2784931C1
Способ получения защитного покрытия в вакууме на формообразующей поверхности металлической пресс-формы для литья магниевых сплавов 2023
  • Аввакумов Илья Ильгизарович
  • Гавариев Ренат Вильсорович
  • Савин Игорь Алексеевич
RU2795775C1
Способ нанесения защитного покрытия на металлическую форму для литья магниевых сплавов 2023
  • Гавариев Ренат Вильсорович
  • Файрузова Зульфия Равилевна
RU2799372C1
СПОСОБ НАНЕСЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ НА ПРЕСС-ФОРМУ ДЛЯ ЛИТЬЯ ПОД ДАВЛЕНИЕМ 2014
  • Леушин Игорь Олегович
  • Савин Игорь Алексеевич
  • Гавариев Ренат Вильсорович
RU2569870C1
СПОСОБ ИЗГОТОВЛЕНИЯ РЕЖУЩЕГО ИНСТРУМЕНТА С КОМПОЗИТНЫМ ИЗНОСОСТОЙКИМ ПОКРЫТИЕМ 2013
  • Жевтун Иван Геннадьевич
  • Гордиенко Павел Сергеевич
RU2532582C2
СПОСОБ НАНЕСЕНИЯ ПОКРЫТИЙ В ВАКУУМЕ НА ИЗДЕЛИЯ ИЗ ЭЛЕКТРОПРОВОДНЫХ МАТЕРИАЛОВ И ДИЭЛЕКТРИКОВ 2009
  • Савостиков Виктор Михайлович
  • Потекаев Александр Иванович
  • Кузьмиченко Владимир Михайлович
RU2409703C1
СПОСОБ НАНЕСЕНИЯ ДВУХСЛОЙНЫХ ПОКРЫТИЙ 2010
  • Тихонов Александр Алексеевич
RU2463391C2
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2004
  • Табаков В.П.
  • Циркин А.В.
  • Чихранов А.В.
RU2260632C1
СПОСОБ НАНЕСЕНИЯ АНТИФРИКЦИОННОГО ИЗНОСОСТОЙКОГО ПОКРЫТИЯ НА ИЗДЕЛИЕ ИЗ МЕТАЛЛА ИЛИ СПЛАВА 2008
  • Савостиков Виктор Михайлович
  • Табаченко Анатолий Никитович
  • Сергеев Сергей Михайлович
  • Кудрявцев Василий Алексеевич
  • Потекаев Александр Иванович
  • Кузьмиченко Владимир Михайлович
  • Ивченко Николай Николаевич
RU2392351C2
СПОСОБ ПОВЫШЕНИЯ СТОЙКОСТИ РЕЖУЩЕГО ИНСТРУМЕНТА С ИЗНОСОСТОЙКИМ ПОКРЫТИЕМ 2003
  • Табаков В.П.
  • Циркин А.В.
RU2261936C2

Иллюстрации к изобретению RU 2 767 970 C1

Реферат патента 2022 года Способ нанесения защитного покрытия на металлический кокиль для литья медных сплавов

Изобретение относится к литейному производству и может быть использовано для повышения стойкости металлического кокиля для литья медных сплавов. Способ нанесения защитного покрытия на формообразующую поверхность металлического кокиля для литья медных сплавов осуществляют следующим образом. Проводят предварительный нагрев и очистку формообразующей поверхности металлического кокиля методом катодно-ионной бомбардировки. На предварительно очищенную формообразующую поверхность металлического кокиля методом катодно-ионной бомбардировки наносят слой из нитрида титана толщиной 1,5 мкм и твердостью 52-55 HRC для адгезионной связи покрытия с формообразующей поверхностью металлического кокиля. Затем поверх нижнего слоя наносят промежуточный слой толщиной 1 мкм твердостью 61-63 HRC из карбонитрида титана и молибдена. После чего наносят верхний слой из нитрида молибдена толщиной 2 мкм и твердостью 53-57 HRC. Нанесение всех указанных слоев осуществляют методом катодно-ионной бомбардировки в вакуумной камере. Обеспечивается повышение износостойкости и теплостойкости формообразующей поверхности кокиля, а также качество получаемых отливок за счет уменьшения коэффициента трения между формообразующей поверхностью и потоком расплавленного металла. 2 ил.

Формула изобретения RU 2 767 970 C1

Способ нанесения защитного покрытия на формообразующую поверхность металлического кокиля для литья медных сплавов, включающий предварительный нагрев и очистку формообразующей поверхности металлического кокиля методом катодно-ионной бомбардировки, отличающийся тем, что на предварительно очищенную формообразующую поверхность металлического кокиля методом катодно-ионной бомбардировки наносят слой из нитрида титана толщиной 1,5 мкм и твердостью 52-55 HRC для адгезионной связи покрытия с формообразующей поверхностью металлического кокиля, затем поверх нижнего слоя наносят промежуточный слой толщиной 1 мкм твердостью 61-63 HRC из карбонитрида титана и молибдена, после чего наносят верхний слой из нитрида молибдена толщиной 2 мкм и твердостью 53-57 HRC, причем нанесение всех указанных слоев осуществляют методом катодно-ионной бомбардировки в вакуумной камере, при этом кокиль с покрываемой формообразующей поверхностью располагают на вращающейся основе, рядом с которой в одной горизонтальной плоскости напротив друг друга устанавливают катоды, испарение которых осуществляют с помощью электрической дуги в испарителе с одновременным действием ионного излучателя в среде реакционного газа.

Документы, цитированные в отчете о поиске Патент 2022 года RU2767970C1

СПОСОБ НАНЕСЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ НА ПРЕСС-ФОРМУ ДЛЯ ЛИТЬЯ ПОД ДАВЛЕНИЕМ 2014
  • Леушин Игорь Олегович
  • Савин Игорь Алексеевич
  • Гавариев Ренат Вильсорович
RU2569870C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2014
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сагитов Дамир Ильдарович
  • Кривов Юрий Георгиевич
RU2561578C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2014
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сагитов Дамир Ильдарович
  • Кривов Юрий Георгиевич
RU2566220C1
CN 103343326 B, 01.04.2015
CN 102864411 A, 09.01.2013.

RU 2 767 970 C1

Авторы

Гавариев Ренат Вильсорович

Савин Игорь Алексеевич

Аввакумов Илья Ильгизарович

Кузнецов Никита Андреевич

Даты

2022-03-22Публикация

2021-10-29Подача