СПОСОБ И СИСТЕМА НАХОЖДЕНИЯ СХОЖИХ МОШЕННИЧЕСКИХ ГРУПП ПО ГРАФОВЫМ МОДЕЛЯМ Российский патент 2022 года по МПК G06F17/00 G06F21/00 

Описание патента на изобретение RU2769084C2

ОБЛАСТЬ ТЕХНИКИ

[0001] Представленное решение относится к способам обработки данных с помощью компьютерных систем, в частности, к способу и системе поиска схожих мошеннических групп по графовым моделям транзакционных данных.

УРОВЕНЬ ТЕХНИКИ

[0002] Проблема анализа банковских транзакций на предмет выявления сомнительных и/или мошеннических операций заключаются в том, что для эффективной работы необходимо осуществить большой объем вычислений данных транзакций за небольшой промежуток времени. В частности, есть необходимость в поиске похожих мошеннических групп при известных образах мошеннических транзакций.

[0003] Известно решение для отображения и анализа транзакционных потоков, в котором для обработки данных применяется принцип построения графовой модели (US 20020156724, PayPal Inc., 24.10.2002). В известном решении графовая модель применяется для анализа узлов совершения транзакций, чтобы отслеживать движение транзакционного потока и визуально представлять маршрут их движения с помощью графовой модели.

[0004] В известном решении принцип построения маршрута движения транзакционных потоков также может использоваться для выявления мошеннической активности или узлов графа, которые являются сомнительными и подлежат дополнительной проверке вне работы системы.

[0005] Из патента RU 2699577 известно решение нахождения наикратчайших путей методом построения итераций для каждого узла графовой модели (ПАО Сбербанк, 06.09.2019).

[0006] В известном решении для каждого узла графовой модели составляется итерационный список. На основе итерационных списков строятся расстояния между каждым узлом графовой модели, что позволяет оценивать, как далеко исходя из расстояния, располагаются узлы графа. Однако приведенное в аналоге решение не позволяет численно оценить степень схожести той или иной графовой модели исходя из построения узлов и ребер для целей анализа принадлежности узлов графа к известным мошенническим реквизитам.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

[0007] Заявленным решением предлагается новый подход в решении существующей технической проблемы, который заключается в анализе графовых моделей транзакционных данных известных мошеннических схем, что позволяет выявлять схожие мошеннические схемы и выявлять мошеннические группы по мошенническим схемам и/или указать на то, что в мошеннической схеме была замешана та или иная мошенническая группа.

[0008] Технический результат заключается в обеспечении идентификации узлов, связанных со схемами осуществления мошеннических финансовых транзакций.

[0009] Заявленный результат достигается за счет компьютерно-реализуемого способа поиска мошеннических транзакций, выполняемый с помощью процессора, при котором:

a) осуществляют получение данных о транзакциях, в которых все данные относятся к мошенническим транзакциям;

b) формируют на основе полученных данных графы, в которых узлами являются данные по транзакциям, а ребрами выполненные транзакции или связи с атрибутами;

c) для каждого графа, построенного на шаге b) выполняются следующие шаги:

- определяются списки итераций для каждой вершины; определяются для каждого узла графа с помощью итерационного алгоритма расстояния для других узлов;

- определяются цепи с максимальным расстоянием;

- осуществляют формирование каркаса графа на основе определенных цепей на этапе с), при этом упомянутый каркас состоит из всех вершин и ребер упомянутых цепей;

- на основании сформированного каркаса определяют диаметр графа, который представляет собой расстояние любой из его цепей;

- определяют количество цепей в каркасе графа;

- определяют плотность каркаса как соотношение количества вершин каркаса графа к общему количеству вершин в графе;

d) осуществляют сравнение графов, полученных на этапе b), при котором выполняется

i. расчет отношения диаметров графов;

ii. расчет отношения количества цепей каркаса;

iii. расчет отношения плотностей каркасов сравниваемых графов;

iv. расчет коэффициентов подобия на основании значений отношений, полученных на этапах i), ii) и iii);

e) определяется по меньшей мере один граф, схожий с по меньшей мере одной известной мошеннической схемой, представленной в виде графа; и

f) определяют данные транзакций, связанные с по меньшей мере одной известной мошеннической схемой.

[0010] В одном из частных вариантов осуществления способа данные транзакций выбираются из группы: идентификатор устройства, IP адрес, номер счета, PAN платежной карты, номер телефона, данные плательщика или получателя платежа, или их сочетания.

[0011] В другом частном варианте осуществления на основании вычисленного коэффициента подобия в базе данных создается запись о реквизитах, относящихся к новой группировке мошенников, или формируют связь анализируемых данных транзакций с по меньшей мере одной известной мошеннической группировкой.

[0012] Заявленное изобретение также реализуется за счет компьютерной системы поиска мошеннических транзакций, причем система содержит по меньшей мере один процессор и по меньшей мере одну память, содержащую машиночитаемые инструкции, которые при их выполнении с помощью процессора осуществляют вышеуказанный способ.

ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0013] Фиг. 1 иллюстрирует блок-схему реализации представленного способа.

[0014] Фиг. 2 иллюстрирует множество анализируемых графов.

[0015] Фиг. 3 иллюстрирует пример определения каркасов графов.

[0016] Фиг. 4 иллюстрирует пример сравнения графов.

[0017] Фиг. 5 иллюстрирует общий вид вычислительного устройства.

ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ

[0018] Дальнейшее описание примера осуществления заявленного решения будет представлено в соответствие с отсылками к представленным фигурам чертежей.

[0019] Согласно Фиг. 1 заявленный способ сравнения мошеннических транзакций (100) выполняется с помощью вычислительного устройства, например, компьютера.

[0020] На первом шаге (101) осуществляется сбор множества данных по транзакциям, в которых существуют мошеннические схемы. Транзакция - это банковская операция между двумя субъектами. Данные по транзакциям могут поступать из различных источников информации, например, из платежных систем, POS-терминалов, процессинговых систем и др., а также могут передаваться по любому протоколу из стэка TCP/IP. Транзакции аккумулируются и хранятся, как правило, в базе данных (БД) компьютерного устройства, например, сервера.

[0021] Следующим шагом является создание графов по транзакциям на этапе (102). Как представлено на Фиг. 2 по полученным транзакциям формируется множество графов GM={G1…Gn} (200), где каждый граф (201) - (203) Gi - невзвешенный неориентированный граф G: = (V, Е), где V - непустое множество узлов, а Е - непустое множество неупорядоченных ребер, n - количество графов. В качестве данных по транзакции могут выступать: идентификатор устройства (например, смартфона), IP адрес, данные геолокации, номер счета, PAN платежной карты, номер телефона, данные плательщика или получателя платежа, или их сочетания. Данные по транзакции позволяют точно определить отправителя и получателя денежных средств.

[0022] Для каждого графа G (201) - (203) из множества полученных графов GM (200) выполняется последовательный алгоритм, который включает в себя следующие этапы.

[0023] На этапе (103) для каждой вершины каждого из графов Gi (201) - (203) находится список окрестностей V: OKRv={OKR [0], OKR [1] … OKR[i]}, где i - целое число, индекс удаленности от узла V, определяемым количеством ребер между исследуемыми вершинами.

[0024] На этапе (104) выполняется определение расстояния для каждой вершины графов (201) - (203) до других вершин соответствующего графа. Данный этап реализуется с помощью итерационного алгоритма поиска кратчайшей цепи, описанного в патенте RU 2699677 (ПАО Сбербанк, 06.09.2019), где j - целое число,] - i-1. Цепь - представляет собой маршрут, все ребра которого различны; число ребер определяет длину цепи.

[0025] Выявляются все цепи с максимальным расстоянием (этап 105) W={Lv1…Lvm}, где m - целое число, количество цепей с максимальным расстоянием. Далее, как показано на Фиг. 3, на этапе (106) для каждого графа (201) - (203) формируется каркас графа (2011, 2021, 2031) KG:=(VK, EK), где - объединение вершин всех цепей множества W каждого графа Gi (201) - (203), - объединение ребер всех цепей множества W каждого графа Gi (201) - (203), k - целое число, количество цепей множества W каждого из графов (201) - (203).

[0026] Далее на этапе (107) выполняется определение диаметра DG каждого графа (201) - (203) из множества Gm (200). Диаметр графа DG равен расстоянию любой из цепей в множестве W для соответствующего графа из множества Gm (200). На этапе (108) определяется количество цепей KLW из множества W в полученных каркасах KG (2011, 2021, 2031) каждого графа Gi (201) - (203), KLW=|W|.

[0027] По итогу вычисления количества цепей KLW на этапе (109) определяется отношение количества вершин VK в каркасах графов KG (2011, 2021, 2031) к общему количеству вершин V в соответствующем графе Gi (201) - (203), т.е. PV=|VK|/|V|, 0<PV≤1. Коэффициент PV отображает плотность графа и показывает, как много у графов (201) - (203) вершин, не входящих в сформированный каркас KG (2011, 2021, 2031), и, соответственно, как сильно каркас отличается от соответствующего графа, для которого он был сформирован. При PV=1 граф и его каркас изоморфны и чем больше значение PV отличается от 1, тем больше вершин не входят в каркас

[0028] Далее осуществляется сравнение графов из множества GM (200). Сравнение графов выполняется попарно, для этого для каждой пары графов {G1, G2} ∈ GM определяется следующее. На этапе (110) выполняется вычисление соотношения диаметров графов G1 и G2 dDG=MIN (DG1, DG2) / MAX (DG1, DG2). Далее на этапе (111) выполняется определение соотношения количеств цепей множеств W в графах G1 и G2 dKLW=MIN (KLW1, KLW2) / MAX (KLW1, KLW2), 0<dKLW≤1. На этапе (112) определяется соотношение коэффициентов плотности каркасов PV графов G1 и G2 dPV=MIN (PV1, PV2) / MAX (PV1, PV2), 0<dPV≤1. После чего на этапе (113) вычисляется коэффициент подобия графов POD=dDG * dKLW * dPV, 0<POD≤1. По итогам на этапе (114) выполняется сравнение коэффициентов подобия двух графов, по итогам которого чем ближе коэффициент подобия POD к 1, тем более похожи графы G1 и G2 между собой, при коэффициенте подобия POD=1 графы G1 и G2 изоморфны.

[0029] Выявление схожих графов с помощью представленного алгоритма можно рассмотреть на следующем примере, представленном на Фиг. 4.

[0030] Выполняется получение данных по транзакциям между субъектами, характеризующимися реквизитами и атрибутами транзакций. Реквизиты и атрибуты транзакций представляют собой в частном случае идентификаторы транзакций, по которым можно определить отправителя и получателя транзакции, т.е. узлы, между которыми произошел денежный перевод. В рассматриваемом примере реквизиты выбираются из группы: номер счета, PAN платежной карты, номер телефона, данные плательщика или получателя платежа, или их сочетания, а атрибуты из группы: идентификатор устройства (например, смартфон), IP адрес, данные геолокации или их сочетания.

[0031] Из вышеописанных данных формируются графовые модели G1 (201), G2 (202), G3 (203). При этом существует отдельная база данных, содержащая данные по транзакциям мошеннических групп, имеющая так же реквизиты и атрибуты. Из этой базы формируется графовая модель мошеннических транзакций GH (210).

[0032] Все сформированные графовые модели представляют собой множество графов GM={GH, G1, G2, G3}, по которым составляются каркасы каждого графа:

а. для графа GH - каркас графа KGH (2101),

b. для графа G1 - каркас графа KG1 (2011),

c. для графа G2 - каркас графа KG2 (2021),

d. для графа G3 - каркас графа KG3 (2031).

[0033] Определяем характеристики каждого графа:

a. для графа GH (210) вычисляются следующие характеристики:

i. диаметр графа DG=3

ii. количество цепей KLW=3

iii. плотность графа PV=0.87

b. для графа G1 (201):

i. диаметр графа DG=1

ii. количество цепей KLW=4

iii. плотность графа PV=1

c. для графа G2 (202):

i. диаметр графа DGH=4

ii. количество цепей KLW=2

iii. плотность графа PV=0.75

d. для графа G3 (203):

i. диаметр графа DGH=1

ii. количество цепей KLW=5

iii. плотность графа PV=1

[0034] Далее выполняется сравнение графов множества GM, сравнение выполняется попарно на основании чего вычисляется коэффициент подобия по каркасам графов:

a. Сравнивая GH и G1 - POD=0.22,

b. Сравнивая GH и G2 - POD=0.43,

c. Сравнивая GH и G3 - POD=0.08,

d. Сравнивая G1 и G2 - POD=0.09,

e. Сравнивая G1 и G3 - POD=0.8,

f. Сравнивая G2 и G3 - POD=0.08.

[0035] В результате расчетов при сравнении графов GH (210) и G2 (202) есть подозрение, что в мошеннической схеме G2 (202) причастна группа мошенников из мошеннической схемы GH (210), ввиду того что коэффициент подобия из всех сравниваемых попарно графов - больше всего.

[0036] Смысл коэффициента подобия - чем он ближе к 1, тем выше вероятность, что мошеннические схемы похожи и к их осуществлению причастна одна и та же группа лиц.

[0037] При коэффициенте подобия, равным 1 графы являются изоморфными, а, следовательно, графовые схемы, построенные на основе данных транзакций - идентичными.

[0038] По результату работы алгоритма сравнения графов (100) определяются мошеннические схемы, похожие друг на друга с точки зрения данных по транзакциям, выявляются реквизиты и атрибуты, используемые обеими мошенническими схемами. Исходя из сравнительного анализа характера изменения используемых мошенниками номеров счетов, PAN платежных карт, номеров телефонов из схожих мошеннических схем принимается решение об массовой блокировке группы (пулы) реквизитов и атрибутов, которые являются обобщением выявленных реквизитов и атрибутов у схожих мошеннических схем.

[0039] Также, в результате выполнения способа (100) принимается решение о создании в каталоге мошеннических схем новой группы мошенников, или причисление мошеннической схемы к существующие группе.

[0040] С помощью заявленного способа (100) появляется возможность выявлять схожие мошеннические схемы, к которым могут применяться однотипные меры противодействия на этапе их формирования, а также объединять выявленные мошеннические схемы в преступные сообщества и выявлять организаторов преступных сообществ на основе дополнительного анализа связей схожих мошеннических схем с помощью анализа графов, формируемых на основании данных о транзакциях.

[0041] На Фиг. 5 представлен общий вид вычислительной системы, реализованной на базе вычислительного устройства (300). В общем случае, вычислительное устройство (300) содержит объединенные общей шиной информационного обмена один или несколько процессоров (301), средства памяти, такие как ОЗУ (302) и ПЗУ (303), интерфейсы ввода/вывода (304), устройства ввода/вывода (305), и устройство для сетевого взаимодействия (306).

[0042] Процессор (301) (или несколько процессоров, многоядерный процессор) могут выбираться из ассортимента устройств, широко применяемых в текущее время, например, компаний Intel™, AMD™, Apple™, Samsung Exynos™, MediaTEK™, Qualcomm Snapdragon™ и т.п. Под процессором также необходимо учитывать графический процессор, например, GPU NVIDIA или ATI, который также является пригодным для полного или частичного выполнения способа (100). При этом, средством памяти может выступать доступный объем памяти графической карты или графического процессора.

[0043] ОЗУ (302) представляет собой оперативную память и предназначено для хранения исполняемых процессором (301) машиночитаемых инструкций для выполнение необходимых операций по логической обработке данных. ОЗУ (302), как правило, содержит исполняемые инструкции операционной системы и соответствующих программных компонент (приложения, программные модули и т.п.).

[0044] ПЗУ (303) представляет собой одно или более устройств постоянного хранения данных, например, жесткий диск (HDD), твердотельный накопитель данных (SSD), флэш-память (EEPROM, NAND и т.п.), оптические носители информации (CD-R/RW, DVD-R/RW, BlueRay Disc, MD) и др.

[0045] Для организации работы компонентов устройства (300) и организации работы внешних подключаемых устройств применяются различные виды интерфейсов В/В (304). Выбор соответствующих интерфейсов зависит от конкретного исполнения вычислительного устройства, которые могут представлять собой, не ограничиваясь: PCI, AGP, PS/2, IrDa, Fire Wire, LPT, COM, SATA, IDE, Lightning, USB (2.0, 3.0, 3.1, micro, mini, type C), TRS/Audio jack (2.5, 3.5, 6.35), HDMI, DVI, VGA, Display Port, RJ45, RS232 и т.п.

[0046] Для обеспечения взаимодействия пользователя с вычислительным устройством (300) применяются различные средства (305) В/В информации, например, клавиатура, дисплей (монитор), сенсорный дисплей, тач-пад, джойстик, манипулятор мышь, световое перо, стилус, сенсорная панель, трекбол, динамики, микрофон, средства дополненной реальности, оптические сенсоры, планшет, световые индикаторы, проектор, камера, средства биометрической идентификации (сканер сетчатки глаза, сканер отпечатков пальцев, модуль распознавания голоса) и т.п.

[0047] Средство сетевого взаимодействия (306) обеспечивает передачу данных устройством (300) посредством внутренней или внешней вычислительной сети, например, Интранет, Интернет, ЛВС и т.п. В качестве одного или более средств (306) может использоваться, но не ограничиваться: Ethernet карта, GSM модем, GPRS модем, LTE модем, 5G модем, модуль спутниковой связи, NFC модуль, Bluetooth и/или BLE модуль, Wi-Fi модуль и др.

[0048] Дополнительно могут применяться также средства спутниковой навигации в составе устройства (300), например, GPS, ГЛОНАСС, BeiDou, Galileo.

[0049] Представленные материалы заявки раскрывают предпочтительные примеры реализации технического решения и не должны трактоваться как ограничивающие иные, частные примеры его воплощения, не выходящие за пределы испрашиваемой правовой охраны, которые являются очевидными для специалистов соответствующей области техники.

Похожие патенты RU2769084C2

название год авторы номер документа
СПОСОБ И СИСТЕМА ПОИСКА МОШЕННИЧЕСКИХ ТРАНЗАКЦИЙ 2018
  • Оболенский Иван Александрович
  • Сысоев Валентин Валерьевич
RU2699577C1
Система и способ выявления подозрительной активности пользователя при взаимодействии пользователя с различными банковскими сервисами 2016
  • Устинов Михаил Валерьевич
  • Голованов Дмитрий Игоревич
  • Ермакович Александр Анатольевич
  • Колотинский Евгений Борисович
  • Кондратов Виталий Викторович
RU2635275C1
СПОСОБ И СИСТЕМА ФОРМИРОВАНИЯ СТРУКТУРЫ ДАННЫХ НА ОСНОВЕ МНОГОСЛОЙНОГО ГРАФА 2020
  • Шарануца Виталий Алексеевич
  • Булавин Алексей Александрович
RU2739473C1
СПОСОБ И СИСТЕМА ЦИКЛИЧЕСКОГО РАСПРЕДЕЛЕННОГО АСИНХРОННОГО ОБМЕНА СООБЩЕНИЯМИ СО СЛАБОЙ СИНХРОНИЗАЦИЕЙ ДЛЯ РАБОТЫ С БОЛЬШИМИ ГРАФАМИ 2021
  • Выборнов Валерий Викторович
RU2761136C1
СПОСОБ И СИСТЕМА ВЫЯВЛЕНИЯ ВРЕДОНОСНЫХ ФАЙЛОВ С ПОМОЩЬЮ ГЕНЕРИРОВАНИЯ ОБЪЯВЛЕНИЙ НА ТОРГОВЫХ ОНЛАЙН ПЛАТФОРМАХ 2019
  • Губанов Дмитрий Николаевич
  • Давидов Дмитрий Георгиевич
  • Сысоев Валентин Валерьевич
  • Анистратенко Александр Артурович
  • Денисенко Максим Геннадиевич
RU2727932C1
СПОСОБ И СИСТЕМА ПОИСКА ПРИНАДЛЕЖНОСТИ IP-АДРЕСА ТЕРРИТОРИАЛЬНОМУ КЛАСТЕРУ НА ОСНОВЕ ДАННЫХ ТРАНЗАКЦИЙ 2019
  • Воробьев Иван Александрович
  • Пинчук Андрей Михайлович
RU2713761C1
СПОСОБ И УСТРОЙСТВО ФОРМИРОВАНИЯ СТАТИЧНОГО ИДЕНТИФИКАТОРА МОБИЛЬНЫХ УСТРОЙСТВ ПОД УПРАВЛЕНИЕМ ОС ANDROID, СПОСОБ И СИСТЕМА ВЫЯВЛЕНИЯ МОШЕННИЧЕСКИХ ТРАНЗАКЦИЙ С ПОМОЩЬЮ СТАТИЧНОГО ИДЕНТИФИКАТОРА 2022
  • Оболенский Иван Александрович
  • Губанов Дмитрий Николаевич
  • Широков Артём Александрович
  • Денисенко Максим Геннадиевич
  • Якушев Владимир Владимирович
RU2779521C1
Способ и система графо-ориентированного создания масштабируемых и сопровождаемых программных реализаций сложных вычислительных методов 2017
  • Соколов Александр Павлович
  • Першин Антон Юрьевич
RU2681408C2
СПОСОБ И УСТРОЙСТВО ФОРМИРОВАНИЯ СТАТИЧНОГО ИДЕНТИФИКАТОРА МОБИЛЬНЫХ УСТРОЙСТВ ПОД УПРАВЛЕНИЕМ iOS, СПОСОБ И СИСТЕМА ВЫЯВЛЕНИЯ МОШЕННИЧЕСКИХ ТРАНЗАКЦИЙ С ПОМОЩЬЮ СТАТИЧНОГО ИДЕНТИФИКАТОРА 2022
  • Губанов Дмитрий Николаевич
  • Широков Артём Александрович
RU2796211C1
СПОСОБ И СИСТЕМА ВЫПОЛНЕНИЯ ТРАНЗАКЦИЙ ПО ДОСТАВКЕ ДЕНЕЖНЫХ СРЕДСТВ ПРИ ВОЗНИКНОВЕНИИ СБОЕВ В КАНАЛЕ СВЯЗИ УСТРОЙСТВА САМООБСЛУЖИВАНИЯ 2017
  • Толкачев Валерий Валерьевич
  • Саенко Сергей Юрьевич
  • Емельянов Дмитрий Борисович
  • Кондратьев Михаил Алексеевич
  • Аскерко Алексей Сергеевич
  • Сысуев Александр Сергеевич
  • Топчак Денис Васильевич
RU2673982C1

Иллюстрации к изобретению RU 2 769 084 C2

Реферат патента 2022 года СПОСОБ И СИСТЕМА НАХОЖДЕНИЯ СХОЖИХ МОШЕННИЧЕСКИХ ГРУПП ПО ГРАФОВЫМ МОДЕЛЯМ

Изобретение относится к способу и системе поиска мошеннических транзакций. Технический результат заключается в повышении безопасности выполнения транзакций. В способе: а) осуществляют получение данных о транзакциях, в которых все данные относятся к мошенническим транзакциям; b) формируют на основе полученных данных графы, в которых узлами являются данные по транзакциям, а ребрами выполненные транзакции или связи с атрибутами; c) для каждого графа, построенного на шаге b) выполняются следующие шаги: определяются списки итераций для каждой вершины; определяются для каждого узла графа с помощью итерационного алгоритма расстояния для других узлов; определяются цепи с максимальным расстоянием; осуществляют формирование каркаса графа на основе определенных цепей на этапе с), при этом упомянутый каркас состоит из всех вершин и ребер упомянутых цепей; на основании сформированного каркаса определяют диаметр графа, который представляет собой расстояние любой из его цепей; определяют количество цепей в каркасе графа; определяют плотность каркаса как соотношение количества вершин каркаса графа к общему количеству вершин в графе; d) осуществляют попарное сравнение графов, полученных на этапе b), при котором для каждой пары графов выполняется i) расчет отношения диаметров графов; ii) расчет отношения количества цепей каркаса; iii) расчет отношения плотностей каркасов сравниваемых графов; iv) расчет коэффициентов подобия на основании значений отношений, полученных на этапах i), ii) и iii); e) определяется по меньшей мере один граф, схожий с по меньшей мере одной известной мошеннической схемой, представленной в виде графа, на основании коэффициента подобия, полученного на этапе d); и f) определяют данные транзакций, связанные с по меньшей мере одной известной мошеннической схемой, определенной на этапе е); g) на основании данных, полученных на этапе f), осуществляют блокировку реквизитов и атрибутов, которые являются обобщением выявленных реквизитов и атрибутов транзакций у схожих мошеннических схем. 2 н. и 2 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 769 084 C2

1. Компьютерно-реализуемый способ поиска мошеннических транзакций, выполняемый с помощью процессора, при котором:

а) осуществляют получение данных о транзакциях, в которых все данные относятся к мошенническим транзакциям;

b) формируют на основе полученных данных графы, в которых узлами являются данные по транзакциям, а ребрами выполненные транзакции или связи с атрибутами;

c) для каждого графа, построенного на шаге b) выполняются следующие шаги:

- определяются списки итераций для каждой вершины; определяются для каждого узла графа с помощью итерационного алгоритма расстояния для других узлов;

- определяются цепи с максимальным расстоянием;

- осуществляют формирование каркаса графа на основе определенных цепей на этапе с), при этом упомянутый каркас состоит из всех вершин и ребер упомянутых цепей;

- на основании сформированного каркаса определяют диаметр графа, который представляет собой расстояние любой из его цепей;

- определяют количество цепей в каркасе графа;

- определяют плотность каркаса как соотношение количества вершин каркаса графа к общему количеству вершин в графе;

d) осуществляют попарное сравнение графов, полученных на этапе b), при котором для каждой пары графов выполняется

i) расчет отношения диаметров графов;

ii) расчет отношения количества цепей каркаса;

iii) расчет отношения плотностей каркасов сравниваемых графов;

iv) расчет коэффициентов подобия на основании значений отношений, полученных на этапах i), ii) и iii);

e) определяется по меньшей мере один граф, схожий с по меньшей мере одной известной мошеннической схемой, представленной в виде графа, на основании коэффициента подобия, полученного на этапе d); и

f) определяют данные транзакций, связанные с по меньшей мере одной известной мошеннической схемой, определенной на этапе е);

g) на основании данных, полученных на этапе f), осуществляют блокировку реквизитов и атрибутов, которые являются обобщением выявленных реквизитов и атрибутов транзакций у схожих мошеннических схем.

2. Способ по п.1, характеризующийся тем, что данные по транзакции выбираются из группы: идентификатор устройства и/или IP адрес, и/или данные геолокации совершения транзакции, и/или номер счета, и/или PAN платежной карты, и/или номер телефона плательщика, и/или данные плательщика или получателя платежа, или их сочетания.

3. Способ по п.1, характеризующийся тем, что на основании вычисленного коэффициента подобия в базе данных создается запись о реквизитах, относящихся к новой группировке мошенников, или формируют связь анализируемых данных транзакций с по меньшей мере одной известной мошеннической группировкой.

4. Система поиска мошеннических транзакций, содержащая по меньшей мере один процессор и по меньшей мере одну память, содержащую машиночитаемые инструкции, которые при их выполнении с помощью процессора осуществляют способ по любому из пп.1-3.

Документы, цитированные в отчете о поиске Патент 2022 года RU2769084C2

Топчак-трактор для канатной вспашки 1923
  • Берман С.Л.
SU2002A1
CN 109858930 A, 07.06.2019
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
Способ получения цианистых соединений 1924
  • Климов Б.К.
SU2018A1
CN 107730262 A, 23.02.2018
US 7769682 B2, 03.08.2010
CN 109934706 A, 25.06.2019
Автомобиль-сани, движущиеся на полозьях посредством устанавливающихся по высоте колес с шинами 1924
  • Ф.А. Клейн
SU2017A1
СПОСОБ И СИСТЕМА ПОИСКА МОШЕННИЧЕСКИХ ТРАНЗАКЦИЙ 2018
  • Оболенский Иван Александрович
  • Сысоев Валентин Валерьевич
RU2699577C1
US 10432664 B2, 01.10.2019
US 8446842 B2, 21.05.2013.

RU 2 769 084 C2

Авторы

Оболенский Иван Александрович

Сысоев Валентин Валерьевич

Харитонов Александр Сергеевич

Ключников Александр Валерьевич

Даты

2022-03-28Публикация

2020-04-28Подача