Устройство определения мест расположения дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами, относится к системе определения мест расположения дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами.
Наиболее близкими к заявленному техническому решению являются: комплекс бесконтактного измерения тока «БИТА-1» [1], комплект приборов «Поиск 021» [2] и «индикатор повреждения изоляции КОРД-ИПИ» [3].
Существенным ограничением в применении каждого из указанных устройств является применение специального генератора сигналов заданной частоты, требующего подключения к трубопроводу. Ограничением также является то, что проведение работ по определению местоположения дефекта в изоляционном покрытии трубопровода, уложенного под водной преградой, возможно только в зимний период т.е. «с поверхности льда».
Технической задачей, решаемой с помощью заявленного технического решения, является создание устройства, позволяющего проводить работы по определению мест расположения дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами в период отсутствия ледяного покрова (весенне-осенний период) по продольному и поперечному градиентам потенциала одновременно. Это исключает возможность получения ошибочных данных в обнаружении дефекта в изоляционном покрытии и позволяет точно фиксировать его местонахождение на трубопроводе относительно ближайшей опоры без подключения какого-либо генератора сигналов к трубе.
Технический результат, который может быть достигнут с помощью настоящего технического решения, состоит в создании рамки из диэлектрического материала (например, из трубы ПВХ или полипропиленовой трубы) цельной сварной конструкции в виде прямоугольного треугольника с неполяризующимися электродами сравнения, располагающимися по углам треугольника на фиксированном расстоянии друг от друга и фуникулера, установленного над осью обследуемого трубопровода с опорами по обеим берегам водной преграды. Опоры предназначены для удержания рамки над осью трубы с фиксацией рамки на тросике фуникулера и контроля расстояния перемещения рамки вдоль оси трубопровода. Это позволяет измерять одновременно продольный и поперечный градиенты потенциала трубопровода на подводном переходе с определенным шагом, определять дефекты в изоляционном покрытии и фиксировать их местоположение на трубопроводе относительно ближайшего контрольно-измерительного пункта.
На фиг. 1 и фиг. 2 представлено устройство определения мест расположения дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами. Устройство определения мест расположения дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами, изображенное на чертежах, состоит из опоры фуникулера со шкивом 1, опоры фуникулера 2 с барабаном, рамки треугольной формы 3, неполяризующихся электродов сравнения 4, 5, 6, жгута проводов от электродов сравнения 7, сматывающего устройства жгута кабелей и тросика фуникулера 8, тросика фуникулера 9, барабан фуникулера 10, счетчика длины кабеля 11 и записывающего прибора 12.
Устройство состоит из рамки 3, которая выполнена в виде прямоугольного треугольника. По углам рамки 3 закреплены идентичные неполяризующиеся электроды сравнения 4, 5, 6. От каждого неполяризующегося электрода сравнения 4, 5, 6 в общий жгут проводов 7 выходит по одному проводу. Все соединения проводов с электродами сравнения 4,5,6 герметичны. Общий жгут проводов 7, сматывающее устройство жгута кабелей и тросика фуникулера 8, совмещенное со счетчиком длины кабеля 11, записывающим прибором 12 и барабаном 10 объединено в едином корпусе 13 и располагается на опоре 2. Один из катетов рамки 3, располагается параллельно оси трубопровода и по своим углам неподвижно соединен с тросиком фуникулера 9. Фуникулер 9 располагается строго над трубой с опорами 1 и 2 на противоположных берегах водной преграды.
Устройство работает следующим образом.
Определяют ось трубопровода на каждом берегу водной преграды и устанавливают опоры 1 и 2 над осью трубопровода так, чтобы тросик фуникулера 9 находился над осью подводного трубопровода. Рамку 3 крепят к тросику фуникулера 9 жестко, без проскальзывания и помещают в воду рядом с опорой 2, совмещенной со сматывающим устройством тросика фуникулера 8 так, чтобы на рамке 3 два неполяризующихся электрода сравнения 4, 5 были над трубопроводом и параллельно оси трубопровода, а третий неполяризующийся электрод сравнения 6, располагающийся в углу рамки 3 был направлен под углом 90 градусов к оси трубопровода и направлен вниз по течению, если оно есть. Счетчик 11 в корпусе 13 устанавливают на нулевую отметку, включают записывающий прибор 12 и делают первое измерение продольного и поперечного градиентов потенциала. Каждое последующее измерение можно осуществлять дискретно, либо производить непрерывную запись, если позволяет записывающий прибор 12. Проведя дискретные измерения с шагом 2 метра (или непрерывно) по всей ширине водной преграды, снимают с записывающего прибора 12 полученную информацию для дальнейшего изучения. По величине измеренных градиентов потенциала судят о наличии дефектов в изоляционном покрытии трубопровода. Возможно применение вольтметра с высоким входным сопротивлением взамен записывающего прибора 12 и в этом случае величину градиента записывают вручную в рабочей тетради.
Применением заявленного устройства поиска дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами, достигается высокая точность обнаружения дефектов в изоляционном покрытии.
Устройство поиска дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами отличается:
- относительной простотой конструкции, неприхотливостью в обращении, возможностью длительного и многократного использования;
- одновременным получением значений градиентов продольного и поперечного потенциалов и определением местоположения дефектов в изоляционном покрытии на трубопроводе в русловой части подводного перехода с привязкой к ближайшему контрольно-измерительному пункту;
- возможностью проведения работ по обследованию трубопроводов в теплое время года;
- отсутствием необходимости применения генератора импульсов и источника питания (или станции катодной защиты).
Литература
1. БИТА-1 Комплекс бесконтактного измерения тока в подземных газопроводах. Руководство по эксплуатации. ДСШК. 412239.001 РЭ.
2. Каталог продукции ООО «Парсек». Приборы и системы коррозионного мониторинга и электрохимической защиты от коррозии. 2017 год. Комплекс приборов «Поиск-021».
3. Индикатор повреждения изоляции КОРД-ИПИ-02. Руководство по эксплуатации.
название | год | авторы | номер документа |
---|---|---|---|
Устройство контроля качества изоляционного покрытия стального трубопровода, уложенного в грунт | 2021 |
|
RU2767717C1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ КОНТАКТА БЛОКА КОНТРОЛЯ ПАРАМЕТРОВ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ С ТРУБОЙ С НАНЕСЕННЫМ УТЯЖЕЛЯЮЩИМ БЕТОННЫМ ПОКРЫТИЕМ | 2011 |
|
RU2484448C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ОЧАГОВ РАЗВИВАЮЩЕЙСЯ ПОДПЛЕНОЧНОЙ КОРРОЗИИ ГАЗОПРОВОДОВ | 2019 |
|
RU2715078C1 |
Способ ремонта обетонированного участка подводного трубопровода и устройство для его осуществления | 2015 |
|
RU2619954C1 |
Способ протаскивания трубопровода в горизонтальной скважине | 2019 |
|
RU2734198C1 |
СПОСОБ ПРОКЛАДКИ ПОДВОДНОГО КАБЕЛЯ | 2004 |
|
RU2280931C1 |
СПОСОБ ТЕСТИРОВАНИЯ ДВУХ ИЗОЛИРОВАННЫХ ПРОВОДНИКОВ, ВЫБРАННЫХ ИЗ ОБЩЕГО ЖГУТА ВИТЫХ ПАР | 2007 |
|
RU2353944C1 |
Способ прокладки подводного трубопровода | 1987 |
|
SU1423852A1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПОЛЯРИЗАЦИОННОГО ПОТЕНЦИАЛА ТРУБОПРОВОДОВ | 2011 |
|
RU2480734C2 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ДЕФЕКТОСКОПИИ ВНУТРЕННИХ ЗАЩИТНО-ИЗОЛЯЦИОННЫХ ПОКРЫТИЙ ДЕЙСТВУЮЩИХ ПРОМЫСЛОВЫХ ТРУБОПРОВОДОВ | 2017 |
|
RU2679042C2 |
Изобретение относится к измерительной технике. Устройство поиска дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами, состоит из неполяризующихся электродов сравнения, рамки, тросика фуникулера, сматывающего устройства, барабана, счетчика длины кабеля, записывающего прибора, при этом на рамке жестко закреплены неполяризующиеся электроды сравнения, каждый электрод рамки соединен со жгутом проводов, все соединения проводов с электродами сравнения герметичны, и указанная рамка закреплена на тросике фуникулера, проходящего над трубопроводом между опорами, расположенными по берегам водной преграды над осью трубопровода. Техническим результатом является возможность измерять одновременно продольный и поперечный градиенты потенциала трубопровода на подводном переходе с определенным шагом, определять дефекты в изоляционном покрытии и фиксировать их местоположение на трубопроводе относительно ближайшего контрольно-измерительного пункта. 2 з.п. ф-лы, 2 ил.
1. Устройство поиска дефектов в изоляционном покрытии на трубопроводах, уложенных под водными преградами, состоящее из неполяризующихся электродов сравнения, рамки, тросика фуникулера, сматывающего устройства, барабана, счетчика длины кабеля, записывающего прибора, при этом на рамке жестко закреплены неполяризующиеся электроды сравнения, каждый электрод рамки соединен со жгутом проводов, все соединения проводов с электродами сравнения герметичны, и указанная рамка закреплена на тросике фуникулера, проходящего над трубопроводом между опорами, расположенными по берегам водной преграды над осью трубопровода.
2. Устройство по п. 1, отличающееся тем, что неполяризующихся электродов три.
3. Устройство по п. 1, отличающееся тем, что неполяризующиеся электроды являются сменными.
Способ диагностики дефектов изоляционного покрытия трубопроводов | 2019 |
|
RU2718711C1 |
Разливочная машина карусельного типа | 1936 |
|
SU56635A1 |
СПОСОБ И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ КОНТАКТА БЛОКА КОНТРОЛЯ ПАРАМЕТРОВ ЭЛЕКТРОХИМИЧЕСКОЙ ЗАЩИТЫ С ТРУБОЙ С НАНЕСЕННЫМ УТЯЖЕЛЯЮЩИМ БЕТОННЫМ ПОКРЫТИЕМ | 2011 |
|
RU2484448C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МЕЖКРИСТАЛЛИТНОЙ КОРРОЗИИ И КОРРОЗИОННЫХ ПОВРЕЖДЕНИЙ НАРУЖНЫХ ПОВЕРХНОСТЕЙ ПОДЗЕМНЫХ И ПОДВОДНЫХ ТРУБОПРОВОДОВ | 2011 |
|
RU2457465C1 |
СПОСОБ ДИАГНОСТИЧЕСКОГО КОНТРОЛЯ ТЕХНИЧЕСКИХ ПАРАМЕТРОВ ПОДЗЕМНОГО ТРУБОПРОВОДА | 2016 |
|
RU2633018C2 |
Авторы
Даты
2022-04-14—Публикация
2021-03-29—Подача