Судно на подводном крыле Российский патент 2022 года по МПК B63B1/24 

Описание патента на изобретение RU2770253C1

Известно судно на подводных крыльях «МЕТЕОР», разработанное конструкторским бюро по СПК под руководством Алексеева Р., Википедия, содержащее корпус с полезной нагрузкой, подводные крылья и движитель (винт), расположенный ниже водной поверхности. Преимуществом данного судна на подводных крыльях является надежное прямое соединение валом двигателя и винта, однако при этом часть упора винта теряется как из-за расположения движителя в погруженном состоянии, угла наклона оси винта, так и из-за скошенного потока поступающего водного потока.

Известно судно на подводном крыльях «Boing Jetfoil», созданное фирмой «Боинг» приведенное в Википедии, которое принято за прототип предлагаемого изобретения. Предлагаемое судно на подводном крыльях содержит корпус с полезной нагрузкой, подводные крылья и движитель (водомет), расположенный выше водной поверхности внутри корпуса судна в районе транца и приводимый в действие от газотурбинных двигателей. Преимуществом данного судна на подводном крыльях является возможность повысить скорость судна и его эффективность благодаря торцевому водозаборнику и водометному насосу, установленному в верхнем сухом участке водяного тракта движителя. Недостатками предлагаемого судна на подводном крыльях является необходимость в двух крыльевой системе его подводной части, что повышает число опорных стоек крыльевой системе и ведет к повышению гидравлического сопротивления. Кроме того, водозаборник и погружная части стоек создают дополнительное гидравлическое сопротивление через донное давление и потери энергии на подъем воды на высоту от водозаборника до сопел движителя. Усложнение конструкции создают объемные вооздушные каналы турбореактивных двигателей на не экологичном жидком топливе, расположенных внутри обитаемого пространства.

Техническим результатом является обеспечение высокой скорости движения судна, повышение КПД двигательно-движительного комплекса и снижение его массы, улучшения парковки и обеспечение безопасности хранения газовых баллонов.

Технический результат достигается тем, что крыльевая система однорядная и включает в себя центральную опору и две боковых, совмещенных со стойками передних обтекателей водозаборников водометных движителей, два движительно-двигательных комплекса вынесены за пределы фюзеляжа по бокам центральной части в цилиндрические корпуса, прикрепленных к нему на двух парах полуколец, каждый водозаборник взаимодействуют с двумя центробежными насосами на одном валу, кинематически связанным со своим блоком двигателей, расположенном в цилиндрическом корпусе, открытым на входе для подачи воздуха, центробежные насосы расположены в воздушном промежутке выше уровня водной поверхности при движении судна, выходные патрубки центробежных насосов направлены в низ и связаны с сопловой гребенкой, находящейся на уровне входного патрубка водозаборника водометного движителя, подводные части выходных патрубков насосов повторяют последние сечения водозаборников, за блоком двигателей расположен электродвигатель и связанный с ним вентилятор, наружный контур которого относительно цилиндрического корпуса образует кольцевое сечение входа на лопатки вентилятора, соединенное с расположенным на оси цилиндрического корпуса его соплом.

Известно судно гидроавиации самолет-амфибия Бе-200 «Альтаир», разработанный ТАНТК имени Бериева Г.М. способное взлетать и приземляться на воду, Википедия, которое состоит из фюзеляжа с глиссирующим днищем, воздушными крыльями и авиационными двигателями. Преимуществом данного аналога является то, что ему не требуется аэродромная взлетная полоса, а на разгоне при взлете не требуется большая дополнительная мощность силовой установки. К недостаткам следует отнести трудность парковки из-за размаха крыльев и недостаточную аэродинамическую эффективность крыльевой системы без использования экранного эффекта.

Известно судно, представленное в RU 2297933 C1 автор С В.Г. 2007.04.27, с глиссирующим днищем, воздушными низко расположенными крыльями относительно фюзеляжа крыльями и авиационными двигателями. Судно по этому предложению принято за прототип данного предложения. Преимуществом данного аналога является то, что низко расположенные крылья реализуют экранный эффект увеличения аэродинамического качества крыльев и позволяет экономить топлива. Однако при этом мощность и масса авиационных двигателей сильно увеличивается благодаря росту гидравлических сопротивлений при разгоне. После выхода на рабочий режим крылья оказываются достаточно удаленными от водной поверхности, что затрудняет получение много большей эффективности по сравнению с судами гидроавиации. Кроме того, сохраняется плохая парковка фюзеляжа с крыльями.

На фиг.1 представлено судно на подводном крыле содержит фюзеляж 1 с двумя палубами - нижней 2 и верхней 3, днищем 4, к которому на стойке 5 и двух стойках 6 прикреплены подводное крыло 7, обтекатели 8 водозаборников 9, взаимодействующих с входными устройствами 10 двух связанных центробежных насосов 11, приводимых во вращение валом 12 от блока авиационных двигателей 13 внутри цилиндрического корпуса 14. Выходные патрубки улиток 15 центробежных насосов 11 расположены заподлицо сразу за задними стенками водозаборников 9. Две системы поворотных лопаток 16,17 установлены внутри водозаборников и выходных патрубков 15 соответственно. За системой поворотных лопаток 17 может быть установлено сопло 18. В цилиндрическом корпусе 14 на концах блоков авиационных двигателей 13 установлены выхлопные патрубки 19, электродвигатели 20, механически связанные с вентиляторами 21. Воздушный тракт вентиляторов заканчивается соплами 22 со связанными поворотными лопатками 23 поворота в вертикальной плоскости вектора тяги сопел 22.

На фиг.2 приведена конструкция водозаборников 9 центробежных насосов 11, в которых по середине расположены концевые части подводного крыла 7, упирающиеся в горизонтальную перегородку 24 внутри диффузора 25, за которой расположены система поворотных лопаток 16, состоящая каждая из двух блоков поворотных лопаточных гребенок 26,27, за которыми расположены вертикальные патрубки водозаборников 9.

Устройство, представленное на фиг.1,2, работает следующим образом. При разгоне и выходе на крыло судно использует работающие на максимальной режиме авиационные двигатели 13 с водометными движителями и электродвигатели 20 с воздушными вентиляторами 21. При этом используются известные конфигурация днища с реданом и закрепленные в носовой и кормовой частях профильные приспособления выхода на номинальный режим и дополнительного поддержания заданного тангажа устройства, а также основное управление последним вектором тяги воздушных сопел 22 вентиляторов 21. Судно содержит две системы движителей, работающих независимо друг от друга - водометнаяую и турбовентиляторную, объединенных на вынесенных за пределы фюзеляжа 1 цилиндрических корпусах 14.

Водометная система движителя работает следующим образом. Часть общего потока, сходящего с подводного крыла входят в горизонтальные дифузорные части водозаборников 9 отдельно снизу и сверху в соответствии со спецификой потоков над и под подводным крылом, которые разделены по середине перегородками 24 и следуют далее через каждые два блока поворотных лопаток 25,27 для получения одинакового давления в вертикальных патрубках водозаборников 9 центробежных водометов. Из каждого центробежного водомета поток воды попадает в два выходных отрогов патрубка 15 и следует вниз к системе поворотных лопаток 17 (или сопловому аппарату 18) водометной системы). При этом по сравнению с прототипом экономится напор подъема воды и гидравлические сопротивления схода водного потока горизонтальных частей водозаборников, а вынесенные в атмосферный поток центробежные насосы не создадут большого сопротивлению движению устройства.

Турбовентиляторная система движителя работает следующим образом. Электрический ток от аккумуляторов, расположенных в трюмном помещении судна поступает на электродвигатели 20 привода вентиляторов 21, к которым поступает поток кольцевой поток воздуха вместе с пограничным слоем на внешних стенках цилиндрических корпусов. После сообщения энергии данный воздушный поток увеличивает свое давление, которое срабатывает в соплах 22, при этом связанные пластины 23 позволят изменять вектор тяги от сигналов иизвестного регулятора заданного тангажа, а температура воздушного потока за вентилятором не опасна для хвостового оперения. Таким образом, в обоих случаях используются пограничные слои воды и воздуха в обоих газодинамических трактах для достижения более высокого КПД данной системы. Кроме того, появляется возможность простой подзаправки электрической энергией во время стоянки паромного судна. Последнее обстоятельство поможет парому с характерным уменьшением расстояния по сравнению с обычными судами уменьшить запасы энергетических компонентов и повысить полезную нагрузку судна, а выбор места расположения хранения аккумуляторов поможет установлению оптимальной центровке судна.

На фиг.3,4 приведена конфигурация и крепление двух пар воздушных крыльев 28 к фюзеляжу. Каждое воздушное крыло содержит коренную 29 и поворотную 30 части. Каждая коренные часть прикреплена к двум полукольцам 31 и через них к фюзеляжу при помощи двух пар цилиндров 32, поршни 33 которых приводятся в поступательное движение верх (вниз) гайками 34, закрепленными на резьбовых валах 35. Поворотные части крепятся к коренным частям с помощью известных устройств. На внутренних краях коренных частей закреплены фермы 36 с валами 37, которые взаимодействуют с отверстиями плашек 38, перемещающихся в прорезях 39 рычагов 40. В месте с плашками по прорезям перемещаются тормозные узлы 41. Оси рычагов 41, закрепленных на плоских поверхностях 42, обеспечивают заданные ходы воздушных крыльев 28. Вниз по течению за выходными патрубками центробежных насосов могут быть установлены дополнительные участки выхлопных патрубков 43. В этом случае выхлопной патрубок содержит, расположенную по периметру систему отверстий с равной или большей площадью площадью, чем выхлопной патрубок, а дополнительный сопловую решетку 44.

Устройство, приведенное на фиг.3,4 работает следующим образом. Поворотные части 30 воздушных крыльев 28 поворачиваются из их парковочного сложенного положения в рабочее горизонтальное положение, при этом задняя пара воздушных крыльев поднимается над водной поверхностью для исключения гидравлических потерь торможения у прототипа. Далее при разгоне устройства воздушные зазоры крыльев 28 и, соответственно, их подъемная сила регулируется в соответствии с оптимальными положениями угла атаки подводного крыла 7 в процессе разгона устройства. После выхода на номинальный режим движения судна зазор между крыльями и водной поверхностью по сравнению с прототипом устанавливается минимальным для достижения максимального аэродинамического качества воздушны крыльев. У прототипа величина объема обеспечения плавучести устройства и угол установки крыльев приводит к намного большим зазорам между крылом и водной поверхностью (существенно меньшему аэродинамическому качеству воздушных крыльев). Далее регулировка данных зазоров передних и задних пар воздушных крыльев 28 может использоваться для поддержания заданного угла атаки подводного крыла. Профиль последнего выбирается суперкавитирующим, а из расположенных по его бокам диффузоров горизонтальных водозаборников может удалятся по периметру пограничные слои для улучшения работы систем поворотных каналов водозаборника. Таким образом, на номинальном режиме работы снижение аэродинамического качества суперкаветирующего крыла 7 компенсируется повышением его аэродинамического качества при работе воздушных крыльев, уменьшение массы которых из-за наличия подводного крыла обеспечивает снижение их массы и простоту изменения их высоты подъема и парковки. Выхлопные газы авиационных двигателей следуя по дополнительному патрубку 42, подводная часть которого расположенному заподлицо к выхлопному патрубку центробежного насоса, направляются к выходным соплам 43, снижая гидравлическое сопротивление подводной части движителя. Таким образом, повышается скорость судна на подводных крыльях, которое улучшит потерянное время перевозимой автотехники как на стоянке на суше, так и во время плавания.

На фиг.5 приведен отсек топливных компонентов, который включает в себя баллонную батарею рабочего газа высокого давления 45 и сухую водяную емкость 46 на массу жидкости, равной заправленной массе рабочего газа высокого давления, снабженного водозаборной напорной при движении судна трубкой (не показана на фиг.1).

Отсек топливных компонентов работает следующим образом. Рабочий газ из баллонной батареи 45 поступает в авиационные двигатели, при этом после достижения некоторой скорости забортная вода начинает заполнять водяную емкость 46, чтобы сохранить постоянство масс рабочего газа и воды. Кроме того, изменяя скорость подачи забортной воды можно еще одним способом регулировать по тангажу положение фюзеляжа. Расположение данного отсека за транцем гарантирует пожаро и взрывобезопасность людей и полезной нагрузки предлагаемого устройства.

Похожие патенты RU2770253C1

название год авторы номер документа
СУДНО С ЧАСТИЧНОЙ МАССОЙ ГЛИССИРОВАНИЯ 2013
  • Сейфи Александр Фатыхович
  • Валиев Фарид Максимович
RU2550783C1
КОРМОВОЙ ДВИЖИТЕЛЬНО-КРЫЛЬЕВОЙ КОМПЛЕКС БЫСТРОХОДНОГО СУДНА 1995
  • Бурнаев В.И.
  • Вальдман В.А.
  • Калинин А.И.
  • Лордкипанидзе А.Н.
  • Мавлюдов М.А.
  • Овсиенко Е.И.
  • Пасечник В.Г.
  • Яковлева О.В.
RU2088465C1
ВОДОМЕТНЫЙ ДВИЖИТЕЛЬНЫЙ КОМПЛЕКС СУДНА С ЦЕНТРОБЕЖНЫМИ НАСОСАМИ 2000
  • Соловьев А.П.
  • Турышев Б.И.
RU2183175C2
СУДНО НА ПОДВОДНЫХ КРЫЛЬЯХ 2010
  • Пасечник Всеволод Георгиевич
  • Пасечник Эмилит Терентьевич
  • Рукавишников Александр Иванович
  • Шарапов Леонид Егорович
RU2434778C1
БЫСТРОХОДНОЕ СУДНО НА ВОЗДУШНОЙ КАВЕРНЕ 2019
  • Павлов Геннадий Алексеевич
RU2714040C1
ЭКРАНОПЛАН С ВОДОМЁТНЫМ ДВИЖИТЕЛЕМ 2015
  • Гарафутдинов Асхат Абрарович
RU2582505C1
ВОДОЗАБОРНИК ВОДОМЕТНОГО ДВИЖИТЕЛЯ ДЛЯ СУДОВ НА ПОДВОДНЫХ КРЫЛЬЯХ 1971
  • В. Я. Максимов, И. И. Ерлыкин, А. Д. Перевощиков, А. Н. Павленко, В. Н. Переверзев, В. М. Стрежнев В. Н. Ковальчук
SU423702A1
АМФИБИЯ 2000
  • Гуров А.Д.
RU2165362C1
ВОДОЗАБОРНИК СУДОВОЙ ДВИЖИТЕЛЬНОЙ УСТАНОВКИ 1994
  • Соловьев А.П.
RU2079420C1
ВОДОЗАБОРНИК ВОДОМЕТНОГО ДВИЖИТЕЛЯ СУДНА 1994
  • Соловьев А.П.
RU2185308C2

Иллюстрации к изобретению RU 2 770 253 C1

Реферат патента 2022 года Судно на подводном крыле

Изобретение относится к области судостроения и может быть использовано при создании крыльевых устройств судов на подводных крыльях. Техническим результатом является обеспечение высокой скорости движения судна, повышение КПД двигательно-движительного комплекса и снижение его массы, улучшение парковки и обеспечение безопасности хранения газовых баллонов. Технический результат достигается тем, что крыльевая система однорядная и включает в себя центральную опору и две боковых, совмещенных со стойками передних обтекателей водозаборников водометных движителей, два движительно-двигательных комплекса вынесены за пределы фюзеляжа по бокам центральной части в цилиндрические корпусы, прикрепленные к нему на двух парах полуколец, каждый водозаборник взаимодействуют с двумя центробежными насосами на одном валу, кинематически связанном со своим блоком двигателей, расположенном в цилиндрическом корпусе, открытом на входе для подачи воздуха, центробежные насосы расположены в воздушном промежутке выше уровня водной поверхности при движении судна, выходные патрубки центробежных насосов направлены вниз и связаны с сопловой гребенкой, находящейся на уровне входного патрубка водозаборника водометного движителя, подводные части выходных патрубков насосов повторяют последние сечения водозаборников, за блоком двигателей расположен электродвигатель и связанный с ним вентилятор, наружный контур которого относительно цилиндрического корпуса образует кольцевое сечение входа на лопатки вентилятора, соединенное с расположенным на оси цилиндрического корпуса его соплом. 5 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 770 253 C1

1. Судно на подводных крыльях, содержащее фюзеляж с хвостовым оперением и глиссирующим днищем, систему полностью заглубленных подводных крыльев со стойками крепления к фюзеляжу с системой дополнительных крыльев выхода и стабилизации положения устройства, водометный движительно-двигательный комплекс на базе авиационных двигателей на жидком или газообразном топливе с каналами подачи воздуха к двигателям и выхлопом из них отработанных газов в атмосферу или в воду, часть стоек подводных крыльев совмещена с водозаборниками водометных движителей, отличающееся тем, что крыльевая система однорядная и включает в себя центральную опору и две боковых, совмещенных со стойками передних обтекателей водозаборников водометных движителей, два движительно-двигательных комплекса вынесены за пределы фюзеляжа по бокам центральной части в цилиндрические корпусы, прикрепленные к нему на двух парах полуколец, каждый водозаборник взаимодействуют с двумя центробежными насосами на одном валу, кинематически связанном со своим блоком двигателей, расположенном в цилиндрическом корпусе, открытом на входе для подачи воздуха, центробежные насосы расположены в воздушном промежутке выше уровня водной поверхности при движении судна, выходные патрубки центробежных насосов направлены вниз и связаны с сопловой гребенкой, находящейся на уровне входного патрубка водозаборника водометного движителя, подводные части выходных патрубков насосов повторяют последние сечения водозаборников, за блоком двигателей расположен электродвигатель и связанный с ним вентилятор, наружный контур которого относительно цилиндрического корпуса образует кольцевое сечение входа на лопатки вентилятора, соединенное с расположенным на оси цилиндрического корпуса его соплом.

2. Судно на подводных крыльях по п.1, отличающееся тем, что сопла корпусов вентиляторов снабжены на концах связанными друг с другом поворотными пластинами поворота вектора тяги в вертикальной плоскости.

3. Судно на подводных крыльях по пп.1, 2, отличающееся тем, что водозаборник взаимодействует с расположенной внутри и посредине концевой частью подводного крыла, переходящего в центральную перемычку и две поворотные лопаточные гребенки, каждая для своего канала, стенки вертикального объединенного канала за лопаточными гребенками могут расширяются в продольном направлении.

4. Судно на подводных крыльях по пп.1, 3, отличающееся тем, что спереди и сзади к фюзеляжу и к носовым и задним полукольцам прикреплены две пары корневых частей воздушных крыльев, а их периферийные части складываются в вертикальной плоскости, полукольца снабжены винтовыми подъемными механизмами, каждая корневая часть соединена с двумя цилиндрами ее центровки и перемещения вниз или вверх винтовым подъемным механизмом и взаимодействует со своими двумя рычагами на фюзеляже, рычаги содержат прорези поступательного перемещения плашки с шарниром посредине и тормозные приспособления фиксации положения рычагов в любом положении в соответствии с положениями поршней цилиндров, подводное суперкавитирующее крыло расположено между водозаборниками водометных движителей.

5. Судно на подводных крыльях по п.1, отличающееся тем, что выхлопные патрубки блока двигателей в нижней части цилиндрического корпуса соединены заподлицо в подводных частях с задними стенками выходных патрубков центробежных водометов, на их концах установлены сопловые гребенки с горизонтальным выходом выхлопных газов, в верхних частях выхлопных патрубков на выходе из цилиндрического корпуса по всему контуру на 360° выполнены системы отверстий для выпуска выхлопного газа в начальные моменты работы двигателей с нулевой начальной скоростью движения.

6. Судно на подводных крыльях по пп.1, 3, отличающееся тем, что баллоны с рабочим газом авиационных двигателей расположены в специальном отсеке за транцем, как и незаполненные водяные емкости на 100% от массы рабочего газа в баллонах вместе со своими системами функционирования и закачки забортной водной.

Документы, цитированные в отчете о поиске Патент 2022 года RU2770253C1

СУДНО НА ПОДВОДНЫХ КРЫЛЬЯХ 2010
  • Пасечник Всеволод Георгиевич
  • Пасечник Эмилит Терентьевич
  • Рукавишников Александр Иванович
  • Шарапов Леонид Егорович
RU2434778C1
ЭКРАНОПЛАН 2005
  • Сергеев Виктор Георгиевич
  • Макаров Сергей Алексеевич
RU2297933C1
US 3139059 A, 30.06.1964
СУДНО С ЧАСТИЧНОЙ МАССОЙ ГЛИССИРОВАНИЯ 2013
  • Сейфи Александр Фатыхович
  • Валиев Фарид Максимович
RU2550783C1
Установка для обработки жидкостей адсорбентом 1982
  • Мельникова Элина Ивановна
  • Устинников Борис Алексеевич
  • Тараканов Петр Алексеевич
  • Грабский Адам Мартынович
  • Коляда Владимир Владимирович
SU1057102A1
КОРМОВОЙ ДВИЖИТЕЛЬНО-КРЫЛЬЕВОЙ КОМПЛЕКС БЫСТРОХОДНОГО СУДНА 1995
  • Бурнаев В.И.
  • Вальдман В.А.
  • Калинин А.И.
  • Лордкипанидзе А.Н.
  • Мавлюдов М.А.
  • Овсиенко Е.И.
  • Пасечник В.Г.
  • Яковлева О.В.
RU2088465C1
US 2007245943 A1, 25.10.2007
WO 9010572 A1, 20.09.1990.

RU 2 770 253 C1

Авторы

Сейфи Александр Фатыхович

Лиманский Адольф Степанович

Даты

2022-04-14Публикация

2021-12-17Подача