ТОПЛИВНАЯ ФОРСУНКА И КАМЕРА СГОРАНИЯ ГАЗОВОЙ ТУРБИНЫ Российский патент 2022 года по МПК F23R3/00 

Описание патента на изобретение RU2774929C1

Предпосылки создания изобретения

Настоящее изобретение относится к конструкции топливной форсунки, используемой в камере сгорания газовой турбины и, в частности, к эффективному техническому решению в применении к пилотной форсунке.

Существуют различные типы топлива для применения в газовых турбинах, и подходящая камера сгорания выбирается в зависимости от калорийности топлива и скорости горения. Низкокалорийное топливо подходит для использования в диффузионной камере сгорания, а высококалорийное топливо подходит для использования в камере сгорания с предварительным смешиванием. Сгорание с предварительным смешиванием обеспечивает снижение температуры пламени по сравнению с диффузионным сгоранием. Поэтому сгорание с предварительным смешиванием позволяет сократить выбросы NOx без разбрызгивания воды или пара, и в настоящее время оно широко применяется в газовых турбинах.

В газовых турбинах, используемых для выработки электроэнергии, в качестве топлива в основном используется природный газ. Многие камеры сгорания с предварительным смешиванием, работающие на природном газе, снабжены пилотной форсункой и основными форсунками и обеспечивают стабилизацию основного пламени с предварительным смешиванием за счет пламени, формируемого пилотной форсункой.

В качестве одного из известных из уровня техники технических решений в такой области техники, например, выложенная заявка на патент Японии, опубликованная под №2010-249449, раскрывает следующее. "Пилотная горелка сгорания в газовой турбине, размещенная на оси камеры сгорания газовой турбины, содержащая: пилотную форсунку сгорания, имеющую множество топливных каналов для сгорания с предварительным смешиванием и множество топливных каналов для диффузионного сгорания, сформированных в ней независимо в осевом направлении; цилиндр пилотной горелки, который размещен концентрически относительно этой пилотной форсунке сгорания так, что верхний по потоку торец цилиндра пилотной горелки окружает нижний по потоку торец пилотной форсунки сгорания; и множество завихряющих лопаток, которые размещены радиально на нижнем по потоку торце пилотной форсунки сгорания для приложения завихряющего усилия к сжатому воздуху, проходящему через кольцеобразный канал для воздуха, сформированный между нижним по потоку торцом пилотной форсунки сгорания и верхним по потоку торцом цилиндра горелки, чтобы преобразовать сжатый воздух в вихревой воздушный поток."

Как указано выше, многие камеры сгорания с предварительным смешиванием, работающие на природном газе, включают в себя одну пилотную форсунку и восемь основных форсунок, а топливопроводы в основном включают в себя два топливопровода - основной топливопровод и пилотный топливопровод. Пилотное отношение (пилотный расход топлива/общий расход топлива) является самым высоким при зажигании и затем снижается с увеличением нагрузки, а при номинальной нагрузке пилотное отношение является самым низким, что обеспечивает сокращение выбросов NOx.

Кроме того, при изменении концентрации метана в топливе изменяются и характеристики сгорания. Поэтому появляется необходимость регулирования соотношения топливо-воздух в зоне горения с помощью байпасного клапана для воздуха и/или изменения пилотного отношения для достижения стабильного состояния сгорания.

При этом проблемой топливной форсунки камеры сгорания газовой турбины зачастую является возникновение термического напряжения, вызываемого перепадом температур между воздухом для горения и топливом. Чрезмерное термическое напряжение приводит к сокращению срока службы, вызываемому малоцикловой усталостью, и к ограничению эксплуатационных возможностей. В частности, в топливной форсунке, включающей в себя множество топливопроводов, как в вышеупомянутой камере сгорания с предварительным смешиванием, работающей на природном газе, несколько текучих сред с разными температурами, такие как топливо и воздух для горения (продувочный воздух) и т.п., проходят в зависимости от условий эксплуатации через топливную форсунку, и это может приводить к увеличению термического напряжения. Термическое напряжение, возникающее в топливной форсунке, приводит к снижению надежности и сокращению срока службы топливной форсунки.

В соответствии с выложенной заявкой на патент Японии, опубликованной под №2010-249449, уменьшаются вибрации, создаваемые потоком сжатого воздуха, а также предотвращается выброс при запуске. Однако не учитывается термическое напряжение, вызываемое на топливной форсунке при прохождении текучих сред с разными температурами, таких как указанные выше топливо, воздух для горения (продувочный воздух) и т.п.

Краткое изложение сущности изобретения

Поэтому задачей настоящего изобретения является создание топливной форсунки, включающей в себя множество топливопроводов, с низким термическим напряжением, вызываемым перепадом температур между топливом и воздухом для горения, проходящими через топливную форсунку, а также камеры сгорания газовой турбины, использующей эту топливную форсунку.

Для решения вышеупомянутой задачи в аспекте настоящего изобретения топливная форсунка включает в себя множество каналов: включающих в себя первый канал, через который проходит топливо или воздух для горения; и второй канал, через который проходит топливо или воздух для горения, и который отличается от первого канала. Из элементов конструкции топливной форсунки неразъемный элемент конструкции топливной форсунки составляет по меньшей мере область, в которой размещены первый канал и второй канал.

Кроме того, в другом аспекте настоящего изобретения камера сгорания газовой турбины включает в себя: вкладыш камеры сгорания, который по существу составляет секцию камеры сгорания, в которой сжигается газовая смесь топлива и воздуха для горения; переходный отсек, через который газы сгорания направляются из секции камеры сгорания в турбину; пилотную форсунку, которая подает топливо и воздух для горения в секцию камеры сгорания; и множество основных форсунок, которые размещены вокруг пилотной форсунки и подают топливо и воздух для горения в секцию камеры сгорания. Пилотная форсунка имеет: первый канал, через который проходит топливо или воздух для горения; и второй канал, через который проходит топливо или воздух для горения, и который отличается от первого канала. Пилотная форсунка включает в себя элементы конструкции, и неразъемный элемент конструкции пилотной форсунки из этих элементов конструкции составляет по меньшей мере область, в которой размещены первый канал и второй канал.

В соответствии с настоящим изобретением можно реализовать топливную форсунку, которая включает в себя множество топливопроводов и имеет низкое термическое напряжение, вызываемое перепадом температур между топливом и воздухом для горения, проходящими через топливную форсунку, а также камеру сгорания газовой турбины, использующую эту топливную форсунку.

Это позволяет получить высокоэффективную камеру сгорания газовой турбины, отличающуюся высокой надежностью и длительным сроком службы.

Эти и другие объекты, признаки и преимущества станут очевидными из приводимого ниже описания вариантов осуществления.

Краткое описание чертежей

Фиг. 1 - схематическая иллюстрация варианта осуществления конструкции типовой газовой турбины;

Фиг. 2 - схематическая иллюстрация варианта осуществления конструкции типовой камеры сгорания;

Фиг. 3 - вид в разрезе, иллюстрирующий конструкцию топливной форсунки в соответствии с вариантом 1 осуществления настоящего изобретения;

Фиг. 4А - вид топливной форсунки, показанной на фиг. 3, в разрезе по А-А';

Фиг. 4В - вид топливной форсунки, показанной на фиг. 3. в разрезе по В-В';

Фиг. 5 - вид в разрезе, иллюстрирующий конструкцию топливной форсунки, известной из уровня техники;

Фиг. 6А - вид топливной форсунки, показанной на фиг. 5, в разрезе по С-С;

представляет собой вид поперечного сечения на фиг. 5; и

Фиг. 6В - вид топливной форсунки, показанной на фиг. 5, в разрезе по D-D'.

Подробное описание предпочтительных вариантов осуществления

Ниже со ссылками на прилагаемые чертежи приводится описание вариантов осуществления настоящего изобретения. При этом на каждом чертеже одни и те же или подобные элементы конструкции обозначены одними и теми же ссылочными позициями, при повторении которых их подробного описания не приводится.

Вариант 1 осуществления

Сначала со ссылками на фиг. 1 и 2 и на фиг. 5-6В приводится описание камеры сгорания газовой турбины в соответствии с настоящим изобретением и известные из уровня техники проблемы. На фиг. 1 представлена схематическая иллюстрация варианта осуществления конструкции типовой газовой турбины. На фиг. 2 представлена схематическая иллюстрация варианта осуществления конструкции типовой камеры сгорания, показанной в качестве камеры сгорания, включающей в себя вкладыш 4 камеры, по существу составляющий секцию 15 камеры сгорания, и переходный отсек 5. На фиг. 5 представлен вид в разрезе, иллюстрирующий конструкцию пилотной форсунки 7, известной из уровня техники. На фиг. 6А и фиг. 6В представлены виды топливной форсунки, показанной на фиг. 5, в разрезе соответственно по С-С' и D-D'.

Как показано на фиг. 1, газовая турбина в общих чертах состоит из компрессора 1, камеры 2 сгорания и турбины 3. Компрессор 1 осуществляет адиабатическое сжатие в качестве рабочей текучей среды воздуха, всасываемого из атмосферы. Камера 2 сгорания смешивает и сжигает топливо со сжатым воздухом, подаваемым из компрессора 1, в результате чего образуются газы сгорания с высокой температурой и высоким давлением. При последующем расширении газов сгорания, поступающих из камеры 2 сгорания, турбина 3 вырабатывает вращающее усилие. Выхлопные газы из турбины 3 выбрасываются в атмосферу.

Как показано на фиг. 2, камера 2 сгорания включает в себя: вкладыш 4 камеры сгорания, по существу составляющий секцию 15 камеры сгорания, в которой сжигается газовая смесь топлива и воздуха для горения; переходный отсек 5, через который газы сгорания направляются из секции 15 камеры сгорания в сторону турбины 3 (в направлении 8 потока газов сгорания); а также основные форсунки 6 и пилотную форсунку 7, которые подают топливо и воздух для горения в секцию 15 камеры сгорания. Как описано выше, множество основных форсунок 6 (например, восемь основных форсунок 6) размещены вокруг одной пилотной форсунки 7.

Как показано на фиг. 5, известная из уровня техники пилотная форсунка 7 имеет такую конструкцию, в которой элементы 9, 10, 11 форсунки соединены друг с другом на участках 12 соединения, при этом элементы 9, 10, 11 форсунки имеют канал А13 и канал В14, предварительно сформированные в них в результате механической обработки, такой как сверление. Элементы 9, 10, 11 форсунки соединены друг с другом с использованием, например, сварки с припоем.

Как правило, при номинальной нагрузке газовой турбины продувочный воздух (воздух для горения), имеющий относительно высокую температуру, проходит через канал А13, а топливо, такое как природный газ, имеющий относительно низкую температуру, проходит через канал В14. Поэтому вследствие перепада температур в основном в радиальном направлении пилотной форсунки 7 и разности термического расширения в радиальном направлении и осевом направлении, вызываемой этим перепадом температур, возникает термическое напряжение. Как правило, неоднородность формы вследствие появления несваренных участков и/или т.п. приводит к усилению термического напряжения и снижению усталостной прочности на участке сварки по сравнению с основным материалом.

Следовательно, в известной из уровня техники пилотной форсунке 7, в частности, участок 12 соединения, соответствующий области размещения и канала А13, и канала В14, становится серьезным узким местом вследствие перепада температур топлива или воздуха для горения, которые проходят соответственно через канал А13 или канал В14, и эксплуатационные возможности этой форсунки ограничиваются малоцикловой усталостью.

Как показано на фиг. 6А, так как в основании известной из уровня техники пилотной форсунки 7 и канал А13, и канал В14 размещены кольцеобразно в окружном направлении пилотной форсунки 7, пилотная форсунка 7 имеет конструкцию, термически разделенную в радиальном направлении каналом А13 и каналом В14. Поэтому термическое напряжение на пилотной форсунке 7 дополнительно усиливается за счет перепада температур топлива или воздуха для горения, которые проходят соответственно через канал А13 и канал В14.

Кроме того, как показано на фиг. 6В, поблизости от переднего торца известной из уровня техники пилотной форсунки 7 канал В14 разделен на множество каналов, размещенных в окружном направлении пилотной форсунки 7, а канал А13 размещен, как и в основании, кольцеобразно в окружном направлении пилотной форсунки 7. Таким образом, пилотная форсунка 7 имеет конструкцию, термически разделенную в радиальном направлении каналом А13.

Ниже со ссылками на фиг. 3-4В приводится описание топливной форсунки в соответствии с вариантом 1 осуществления настоящего изобретения. На фиг. 3 представлен вид в разрезе, иллюстрирующий конструкцию пилотной форсунки 7 в соответствии с вариантом 1 осуществления настоящего изобретения. На фиг. 4А и 4В представлены виды пилотной форсунки, показанной на фиг. 3, в разрезе соответственно по А-А' и В-В'.

Как показано на фиг. 3, пилотная форсунка 7 в варианте 1 осуществления имеет канал А13 (первый канал), через который проходит топливо или воздух для горения, и канал В14 (второй канал), через который проходит топливо или воздух для горения и который отличается от канала А13 (от первого канала). Из элементов 9, 10 конструкции форсунки в пилотной форсунке 7 элемент 10 конструкции, представляющий собой неразъемный элемент конструкции без участка 12 соединения, составляет по меньшей мере область, в которой размещены и канал А13 (первый канал) и канал В14 (второй канал).

Как показано на фиг. 3, область, в которой размещены и канал А13 (первый канал), и канал В14 (второй канал), состоит из неразъемного элемента 10 конструкции без участка 12 соединения. Это позволяет предотвратить превращение участка 12 соединения в серьезное узкое место вследствие, как описано выше, перепада температур топлива или воздуха для горения, которые проходят соответственно через канал А13 и канал В14. Таким образом, можно повысить надежность и увеличить длительность срока службы пилотной форсунки 7.

Как показано на фиг. 4А и 4В, относящихся к пилотной форсунке 7 в варианте осуществления, и канал А13 (первый канал) и канал В14 (второй канал) разделен на множество каналов, размещенных в окружном направлении пилотной форсунки 7.

Как показано на фиг. 4А и 4В, и канал А13 (первый канал), и канал В14 (второй канал) разделен на множество каналов, размещенных в окружном направлении пилотной форсунки 7, за счет чего предотвращается полное термическое разделение пилотной форсунки 7 в радиальном направлении каналом А13 (первым каналом) и каналом В14 (вторым каналом). В свою очередь, это позволяет снизить термическое напряжение на пилотном форсунке 7 вследствие перепада температур топлива или воздуха для горения, которые проходят соответственно через канал А13 и канал В14.

Например, даже в случае, когда воздух для горения проходит через канал А13 (первый канал), а топливо с более низкой температурой, чем воздух для горения, проходит через канал В14 (второй канал), термическое напряжение на пилотной форсунке 7 вследствие перепада температур между топливом и воздухом для горения снижается. Поэтому в дополнение к эффекту конструкции с использованием неразъемного элемента 10 конструкции форсунки без участка 12 соединения обеспечивается дополнительное повышение надежности и увеличение длительности срока службы пилотной форсунки 7.

Кроме того, как показано на фиг. 3, из обоих каналов - канала А13 (первого канала) и канала В14 (второго канала) - только канал А13 (первый канал) размещен в элементе 9 конструкции форсунки поблизости от переднего торца пилотной форсунки 7. Элемент 9 конструкции форсунки только с размещенным в нем каналом А13 (только с первым каналом) соединен с элементом 10 конструкции форсунки с размещенными в нем обоими каналами - с каналом А13 (с первым каналом) и каналом В14 (вторым каналом), например, методом сварки с припоем или HIP (горячего изостатического прессования).

Как показано на фиг. 3, участок 12 соединения размещен исключительно в области, в которой из обоих каналов - канала А13 (первого канала) и канала В14 (второго канала) - сформирован только один канал А13 (первый канал). Такая конструкция позволяет предотвратить возникновение термического напряжения на пилотной форсунке вследствие перепада температур топлива или воздуха для горения, проходящих через соответствующий канал, и, в свою очередь, обеспечивает надежность участка 12.

При этом для соединения элемента 9 форсунки и элемента 10 форсунки друг с другом на участке 12 соединения в предпочтительном варианте используют вышеупомянутый метод HIP (горячего изостатического прессования). Использование метода HIP позволяет в максимально возможной степени предотвратить появление несваренных участков и за счет этого снизить термическое напряжение, вызываемое неоднородностью формы на участке 12 соединения.

Как описано выше, в соответствии с настоящим изобретением появляется возможность создания топливной форсунки с низким термическим напряжением, вызываемым перепадом температур между топливом и воздухом для горения, которые проходят через нее, и камеру сгорания газовой турбины, использующую эту топливную форсунку, а также возможность повысить надежность и длительность срока службы камеры сгорания газовой турбины.

Следует иметь в виду, что настоящее изобретение не ограничивается рассмотренными выше вариантами осуществления и включает в себя самые различные модификации. Например, рассмотренные выше варианты осуществления были описаны в деталях для того, чтобы объяснить настоящее изобретение простым для понимания способом, и необязательно ограничиваются вариантами, имеющими все описанные конструкции. Кроме того, можно заменять участок конструкции одного варианта осуществления конструкцией другого варианта осуществления, а также можно добавлять конструкцию одного варианта осуществления к конструкции другого варианта осуществления. Кроме того, можно также добавлять/удалять/заменять некоторые конструкции каждого варианта осуществления другими конструкциями.

Список ссылочных позиций

1 - компрессор;

2 - камера сгорания;

3 - турбина;

4 - вкладыш камеры сгорания;

5 - переходный отсек;

6 - основная форсунка;

7 - пилотная форсунка;

8 - направление потока газов сгорания;

9, 10, 11 - элемент конструкции форсунки;

12 - участок соединения;

13 - канал А;

14 - канал В;

15 - секция камеры сгорания.

Похожие патенты RU2774929C1

название год авторы номер документа
ГОРЕЛКА, В ЧАСТНОСТИ, ДЛЯ ГАЗОВЫХ ТУРБИН 2010
  • Бётчер Андреас
  • Кано Вольф Мариано
  • Клуге Андре
  • Кригер Тобиас
  • Старинг Саша
  • Вёрц Ульрих
RU2536465C2
Топливная форсунка с радиальным и осевым завихрителями для газовой турбины и газовая турбина 2017
  • Черутти Маттео
RU2732353C2
СЖИГАЮЩЕЕ УСТРОЙСТВО ГАЗОТУРБИННОЙ УСТАНОВКИ 2020
  • Асаи, Томохиро
  • Йосида, Сохей
  • Хирата, Йоситака
  • Хаяси, Акинори
  • Акияма, Ясухиро
RU2746490C1
УСТРОЙСТВО ДЛЯ КАМЕРЫ СГОРАНИЯ ГАЗОВОЙ ТУРБИНЫ 2002
  • Йёнссон Бертил
  • Юханссон Патрик
RU2301943C2
СЖИГАЮЩЕЕ УСТРОЙСТВО ГАЗОТУРБИННОЙ УСТАНОВКИ 2020
  • Асаи, Томохиро
  • Йосида, Сохей
  • Хирата, Йоситака
  • Акияма, Ясухиро
RU2746489C1
КАМЕРА СГОРАНИЯ ГАЗОВОЙ ТУРБИНЫ И ГАЗОВАЯ ТУРБИНА 2019
  • Цукидате, Хиронори
  • Ога, Кунихиро
  • Терада, Йоситака
  • Нисида, Коити
RU2727946C1
КАМЕРА СГОРАНИЯ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, СОДЕРЖАЩИЙ ТАКУЮ КАМЕРУ СГОРАНИЯ 2019
  • Цукидате, Хиронори
  • Ога, Кунихиро
  • Терада, Йоситака
  • Нисида, Коити
RU2738248C1
Способ и система регулирования для газовой турбины 2013
  • Ромиг Брайан Уэсли
  • Саймонс Деррик Уолтер
  • Нарра Венкат
RU2614471C2
ГОРЕЛКА 2010
  • Бётчер Андреас
  • Кригер Тобиас
  • Фогтманн Даниель
  • Вёрц Ульрих
RU2562900C2
КАМЕРА СГОРАНИЯ ГАЗОВОЙ ТУРБИНЫ И СПОСОБ ИЗГОТОВЛЕНИЯ ТОПЛИВНОЙ ФОРСУНКИ 2021
  • Кумагаи Сатоси
  • Нагано Кота
  • Ота Атсуо
RU2766382C1

Иллюстрации к изобретению RU 2 774 929 C1

Реферат патента 2022 года ТОПЛИВНАЯ ФОРСУНКА И КАМЕРА СГОРАНИЯ ГАЗОВОЙ ТУРБИНЫ

Изобретение относится к камерам сгорания газотурбинных двигателей. Топливная форсунка содержит множество каналов и включает в себя: первый канал, через который проходит топливо или воздух для горения, второй канал, через который проходит топливо или воздух для горения и который отличается от первого канала, причем топливная форсунка включает в себя элементы конструкции, и неразъемный элемент конструкции топливной форсунки из этих элементов конструкции составляет по меньшей мере область, в которой размещены первый канал и второй канал. Первый канал и второй канал разделены на множество секций, размещенных в окружном направлении топливной форсунки. Изобретение позволяет получить топливную форсунку с низким термическим напряжением, вызываемым перепадом температур между топливом и воздухом для горения, которые проходят через нее, а также повысить надежность и длительность срока службы камеры сгорания газовой турбины. 2 н. и 8 з.п. ф-лы, 8 ил.

Формула изобретения RU 2 774 929 C1

1. Топливная форсунка, содержащая множество каналов, включает в себя:

первый канал, через который проходит топливо или воздух для горения; и

второй канал, через который проходит топливо или воздух для горения и который отличается от первого канала,

причем топливная форсунка включает в себя элементы конструкции, и неразъемный элемент конструкции топливной форсунки из этих элементов конструкции составляет по меньшей мере область, в которой размещены первый канал и второй канал.

2. Топливная форсунка по п. 1, отличающаяся тем, что

и первый канал, и второй канал разделены на множество секций, размещенных в окружном направлении топливной форсунки.

3. Топливная форсунка по п. 1 или 2, отличающаяся тем, что

воздух для горения проходит через первый канал, а

топливо, имеющее более низкую температуру, чем воздух для горения, проходит через второй канал.

4. Топливная форсунка по п. 1 или 2, отличающаяся тем, что

из первого канала и второго канала только первый канал расположен поблизости от переднего торца топливной форсунки, и

область, в которой размещен только первый канал, соединена с областью, в которой размещены первый канал и второй канал.

5. Топливная форсунка по п. 4, отличающаяся тем, что

область, в которой размещен только первый канал, соединена с областью, в которой размещены первый канал и второй канал, методом сварки или горячего изостатического прессования (HIP).

6. Камера сгорания газовой турбины, содержащая:

вкладыш камеры сгорания, который по существу составляет секцию камеры сгорания, в которой сжигается газовая смесь топлива и воздуха для горения;

переходный отсек, через который газы сгорания направляются из секции камеры сгорания в турбину;

пилотную форсунку, которая подает топливо и воздух для горения в секцию камеры сгорания; и

множество основных форсунок, которые размещены вокруг пилотной форсунки и подают топливо и воздух для горения в секцию камеры сгорания,

причем пилотная форсунка имеет:

первый канал, через который проходит топливо или воздух для горения; и

второй канал, через который проходит топливо или воздух для горения и который отличается от первого канала, и

пилотная форсунка включает в себя элементы конструкции, и неразъемный элемент конструкции пилотной форсунки из этих элементов конструкции составляет по меньшей мере область, в которой размещены первый канал и второй канал.

7. Камера сгорания газовой турбины по п. 6, отличающаяся тем, что

и первый канал, и второй канал разделены на множество каналов, размещенных в окружном направлении пилотной форсунки.

8. Камера сгорания газовой турбины по п. 6 или 7, отличающаяся тем, что

воздух для горения проходит через первый канал, а

топливо, имеющее более низкую температуру, чем воздух для горения, проходит через второй канал.

9. Камера сгорания газовой турбины по п. 6 или 7, отличающаяся тем, что

из первого канала и второго канала только первый канал расположен поблизости от переднего торца пилотной форсунки, и

область, в которой размещен только первый канал, соединена с областью, в которой размещены первый канал и второй канал.

10. Камера сгорания газовой турбины по п. 9, отличающаяся тем, что

область, в которой размещен только первый канал, соединена с областью, в которой размещены первый канал и второй канал, методом сварки или горячего изостатического прессования (HIP).

Документы, цитированные в отчете о поиске Патент 2022 года RU2774929C1

JP 2010249449 A, 04.11.2010
US 10415830 B2, 17.09.2019
ЦЕНТРОБЕЖНО-ПНЕВМАТИЧЕСКАЯ ФОРСУНКА 2008
  • Ягодкин Виктор Иванович
  • Васильев Александр Юрьевич
  • Бородако Валентин Владимирович
  • Свириденков Александр Алексеевич
RU2374561C1
ТОПЛИВОВОЗДУШНАЯ ФОРСУНКА (ВАРИАНТЫ ), КАМЕРА СГОРАНИЯ ДЛЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ (ВАРИАНТЫ ) И СПОСОБ РАБОТЫ ТОПЛИВОВОЗДУШНОЙ ФОРСУНКИ (ВАРИАНТЫ ) 2013
  • Ахм Цзон Хо
  • Саймонс Деррик Уолтер
  • Бордмэн Грегори Аллен
  • Ромиг Брайан Уэсли
  • Эдвардс Кара
  • Хьюс Майкл Джон
RU2621566C2
РАСПОЛОЖЕНИЕ ГОРЕЛОК КАМЕРЫ СГОРАНИЯ 2015
  • Стивенсон Имоджин
  • Бикертон Рональд
  • Долмэнсли Тимоти
RU2672216C2

RU 2 774 929 C1

Авторы

Нагахаси Хироаки

Терада Йоситака

Нумата Сохеи

Игараси Сота

Вада Ясухиро

Даты

2022-06-27Публикация

2021-09-15Подача