СПОСОБ ОПРЕДЕЛЕНИЯ УСЛОВИЙ ПОПАДАНИЯ ПОСТОРОННИХ ПРЕДМЕТОВ В ВОЗДУХОЗАБОРНИК ВОЗДУШНОГО СУДНА С ТУРБОРЕАКТИВНЫМ ДВИГАТЕЛЕМ Российский патент 2022 года по МПК G01P3/66 B64C1/00 

Описание патента на изобретение RU2776325C1

Изобретение относится к области самолетостроения и может быть использовано при разработке конструктивных мер по предупреждению попадания посторонних предметов в воздухозаборник воздушного судна на этапах взлета и посадки, а также при исследовании и моделировании процессов вихреобразования и попадания посторонних предметов с поверхности взлетно-посадочной полосы в воздухозаборник.

Наиболее близким по технической сущности к заявляемому способу (прототипом) является способ определения условий подхода снаряда к мишени и устройство для его осуществления (пат. 2518853 Рос. Федерация: МПК G01P 3/66 / Ефанов В.В., Мужичек С.М., Мелехов А.Е., Мелехов С.Е. заявитель и патентообладатель Федеральное государственное военное образовательное учреждение высшего профессионального образования «Военный авиационный инженерный университет» (г. Воронеж) Министерства обороны Российской Федерации. Заявл. 13.09.11; опубл. 10.06.14. Бюл. №16), заключающийся в измерении скорости снаряда, в изготовлении датчиков в виде линеек фотоприемников, размещенных в вертикальной и горизонтальной плоскостях, фиксации сработавших элементов фотоприемников первого и второго датчиков в момент пролета снаряда, определении координат движения метаемого тела, выдаче информации о скорости метаемого тела и координат его пролета относительно первого и второго датчиков, причем размещают первый и второй датчик на расстоянии - m1, первый датчик и мишень на расстоянии - m2, фиксируют динамику изменения координат снаряда и на этой основе определяют координаты попадания снаряда в мишень в виде выражений: где х1, у1, х2, у2 - координаты пролета снаряда относительно первого и второго датчиков, - коэффициент, определяют углы подхода снаряда к мишени в виде выражений: где X, Y - координаты вектора движения снаряда.

Основным недостатком прототипа является низкая информативность определения попадания посторонних предметов в воздухозаборник воздушного судна с турбореактивным двигателем, поскольку при разработке конструктивных мер по предупреждению попадания посторонних предметов в воздухозаборник воздушного судна на этапах взлета и посадки, а также при исследовании и моделировании процессов вихреобразования и попадания посторонних предметов с поверхности взлетно-посадочной полосы в воздухозаборник, помимо скорости, требуется определение ускорения постороннего предмета, что невозможно осуществить с помощью указанного способа-прототипа.

Техническим результатом предлагаемого изобретения является повышение информативности определения попадания посторонних предметов в воздухозаборник воздушного судна с турбореактивным двигателем за счет определения методом наименьших квадратов скорости и ускорения постороннего предмета с помощью пространственно-разнесенных вертикальной и горизонтальной линеек излучающих диодов и фотоприемников первого и второго датчиков.

Указанный технический результат достигается тем, что в известном способе определения условий подхода снаряда к мишени и устройстве для его осуществления, заключающемся в изготовлении двух датчиков в виде линеек фотоприемников, размещенных в вертикальной и горизонтальной плоскостях, размещении горизонтальных линеек первого и второго датчиков на расстоянии m1, а горизонтальной линейки первого датчика относительно мишени или плоскости выходной апертуры воздухозаборника на расстоянии m2, определении координат движения постороннего предмета, выдаче информации о координатах его пролета относительно первого и второго датчиков, фиксации динамики изменения координат постороннего предмета и на этой основе определении координат попадания постороннего предмета в плоскость выходной апертуры воздухозаборника в виде выражений: где х1, у1, х2, у2 - координаты пролета постороннего предмета относительно первого и второго датчиков, - коэффициент условия размещения второго датчика и плоскости выходной апертуры воздухозаборника, определении углов подхода постороннего предмета к плоскости выходной апертуры воздухозаборника с помощью выражений: где X, Y - координаты вектора движения постороннего предмета, согласно предлагаемому изобретению, дополнительно размещают линейку в горизонтальной плоскости и линейку в вертикальной плоскости первого датчика на минимально возможном расстоянии m21, линейку в горизонтальной плоскости и линейку в вертикальной плоскости второго датчика на минимально возможном расстоянии m43, линейку в вертикальной плоскости первого датчика и линейку в горизонтальной плоскости второго датчика на максимально возможном расстоянии m32, при этом расстояние от горизонтальной линейки первого датчика до горизонтальной линейки второго датчика составит m31, от горизонтальной линейки первого датчика до вертикальной линейки второго датчика - m41, от вертикальной линейки первого датчика до вертикальной линейки второго датчика - m42, фиксируют сработавшие элементы горизонтальных и вертикальных линеек фотоприемников первого t1, t2 и второго t3, t4 датчиков в моменты пролета постороннего предмета, вычисляют методом наименьших квадратов оценки скорости и ускорения согласно выражению: где - операция нахождения обратной матрицы, - транспонирование матрицы, выдают информацию о скорости и ускорении постороннего предмета на дополнительный индикатор. За счет этого происходит повышение информативности определения попадания посторонних предметов в воздухозаборник воздушного судна с турбореактивным двигателем.

Сущность изобретения заключается в том, что дополнительно, размещают линейку в горизонтальной плоскости и линейку в вертикальной плоскости первого датчика на минимально возможном расстоянии m21, линейку в горизонтальной плоскости и линейку в вертикальной плоскости второго датчика на минимально возможном расстоянии m43, линейку в вертикальной плоскости первого датчика и линейку в горизонтальной плоскости второго датчика на максимально возможном расстоянии m32, при этом расстояние от горизонтальной линейки первого датчика до горизонтальной линейки второго датчика составит m31, от горизонтальной линейки первого датчика до вертикальной линейки второго датчика - m41, от вертикальной линейки первого датчика до вертикальной линейки второго датчика составит m42, фиксируют сработавшие элементы горизонтальных и вертикальных линеек фотоприемников первого t1, t2 и второго t3, t4 датчиков в моменты пролета постороннего предмета, вычисляют методом наименьших квадратов оценки скорости и ускорения согласно выражению: - операция нахождения обратной матрицы, - транспонирование матрицы, выдают информацию о скорости и ускорении постороннего предмета на дополнительный индикатор. Этим достигается указанный в изобретении результат.

Структурная схема устройства, реализующего заявляемый способ определения попадания посторонних предметов в воздухозаборник воздушного судна с турбореактивным двигателем, может быть представлена, например, по аналогии с прототипом на фиг. 1, где цифрами обозначены: 1,2 - первый и второй датчик, 3,4 - первый и второй измерительный прибор, 5, 6, 7, 8 - первый, второй, третий и четвертый элемент ИЛИ, 9, 10 - первый и второй блок логики, 11 - вычислитель условий подлета постороннего предмета к плоскости выходной апертуры воздухозаборника, 12 - индикатор углов подлета постороннего предмета к плоскости выходной апертуры воздухозаборника, 13 - индикатор координат попадания постороннего предмета на плоскость выходной апертуры воздухозаборника, 14 - излучающие диоды, 15 - фотоприемники, 16 - источник питания, 20 - индикатор скорости и ускорения постороннего предмета.

Назначение обозначенных цифрами 1-16 элементов структурной схемы ясно из их названия и соответствует описанию прототипа.

Работа заявляемого способа определения попадания посторонних предметов в воздухозаборник воздушного судна с турбореактивным двигателем осуществляется следующим образом. При попадании постороннего предмета в воздухозаборник воздушного судна срабатывает горизонтальная линейка фотоприемников 15 первого датчика 1 вследствие прерывания оптической связи комбинации излучающих диодов 14 и фотоприемников 15. Достижение однозначности такой взаимосвязи излучающих диодов и принимающих фотоэлементов может быть достигнуто, например, за счет использования линз специальной формы. Сигналы с выходов горизонтальной линейки фотоприемников 15 датчика 1 поступают через первый элемент ИЛИ 5 на запуск первого 3 измерительного прибора и на первые входы первого 9 блока логики. Работа первого 9 и второго 10 блоков логики, состоящих из матриц 17 элементов И, матриц 18 триггеров и блоков 19 индикации, осуществляется аналогично прототипу. Момент времени t1 пролета постороннего предмета через горизонтальную линейку фотоприемников 15 первого датчика 1 фиксируется первым измерительным прибором 3 и подается на третью группу входов вычислителя 11.

Минимально возможное расстояние между горизонтальной и вертикальной линейками фотоприемников 15 датчика 1 m21 определяется исходя из технических характеристик излучающих диодов 14 и фотоприемников 15 для обеспечения однозначной оптической связи между ними и исключения одновременного срабатывания совокупности горизонтальных и вертикальных линеек, а также для возможности пренебрежения произвольным, чаще всего наклонным направлением движения постороннего предмета при определении его координат относительно первого 1 и второго 2 датчиков.

В момент пролета постороннего предмета через вертикальную линейку фотоприемников 15 первого датчика 1 сигналы с выходов вертикальной линейки фотоприемников 15 датчика 1 поступают через второй элемент ИЛИ 6 на запуск второго 4 измерительного прибора и на вторые входы первого 9 блока логики. Момент времени t2 пролета постороннего предмета через вертикальную линейку фотоприемников 15 первого датчика 1 фиксируется вторым измерительным прибором 4 и подается на третью группу входов вычислителя 11.

Максимально возможное расстояние m32 между линейками в вертикальной плоскости первого датчика 1 и в горизонтальной плоскости второго датчика 2 определяется конструктивными особенностями воздухозаборника при обеспечении возможности размещения линеек в плоскости с минимальным искривлением.

В момент пролета постороннего предмета через горизонтальную линейку фотоприемников 15 второго датчика 2 происходит срабатывание следующей комбинации чувствительных элементов горизонтальной линейки фотоприемников 15. Сигналы с выходов горизонтальной линейки фотоприемников 15 второго 2 датчика поступают через третий элемент ИЛИ 7 на остановку первого измерительного прибора 3 и на первые входы второго 10 блока логики. Момент времени t3 пролета постороннего предмета через горизонтальную линейку фотоприемников 15 второго датчика 2 фиксируется первым измерительным прибором 3 и подается на третью группу входов вычислителя 11.

В момент пролета постороннего предмета через вертикальную линейку фотоприемников 15 второго датчика 2 происходит срабатывание следующей комбинации чувствительных элементов горизонтальной линейки фотоприемников 15. Сигналы с выходов вертикальной линейки фотоприемников 15 второго 2 датчика поступают через четвертый элемент ИЛИ 8 на остановку второго измерительного прибора 4 и на вторые входы второго 10 блока логики. Момент времени t4 пролета постороннего предмета через вертикальную линейку фотоприемников 15 второго датчика 2 фиксируется вторым измерительным прибором 4 и подается на третью группу входов вычислителя 11.

Код сигнала, поступающий на первые и вторые входы блока 9 логики, соответствует координатам пролета постороннего предмета относительно первого 1 датчика и обеспечивает срабатывание определенной комбинации матрицы 17 элементов И, сигналы с выхода которых обеспечивают срабатывание комбинации матрицы 18 триггеров, сигналы с выхода которых обеспечивают индикацию координат пролета постороннего предмета относительно первого датчика 1 блоком индикации 19.

Аналогично определяются координаты постороннего предмета относительно второго датчика 2.

Вычислитель 11 условий подлета постороннего предмета к плоскости выходной апертуры воздухозаборника может быть изготовлен, например, на основе микроконтроллера и обеспечивает определение углов подлета постороннего предмета к плоскости выходной апертуры воздухозаборника, координат его попаданий на эту плоскость, а также оценку скорости и ускорения постороннего предмета.

Для определения координат попаданий постороннего предмета на плоскость выходной апертуры воздухозаборника предварительно устанавливают горизонтальную линейку второго датчика 2 относительно горизонтальной линейки первого 1 на расстояние m1, а горизонтальную линейку первого датчика относительно плоскости выходной апертуры воздухозаборника на расстояние m2.

Сигналы, соответствующие координатам пролета постороннего предмета относительно первого 1 и второго 2 датчиков, поступают с выходов первого 9 и второго 10 блоков логики на первые и вторые входы вычислителя 11 условий подлета постороннего предмета к плоскости выходной апертуры воздухозаборника.

Вычислитель 11 определяет координаты попаданий постороннего предмета на плоскость выходной апертуры воздухозаборника в соответствии с приведенными выражениями:

и

где х1, у1, х2, у2 - координаты пролета постороннего предмета относительно горизонтальной и вертикальной линеек фотоприемников первого и второго датчиков соответственно, - коэффициент, определяющий условия размещения горизонтальной линейки второго датчика 2 и плоскости выходной апертуры воздухозаборника относительно горизонтальной линейки первого датчика 1.

Вычислитель 11 определяет углы подлета постороннего предмета к плоскости выходной апертуры воздухозаборника с помощью выражений:

где X, Y - координаты вектора движения постороннего предмета. При этом координаты X, Y вектора движения постороннего предмета при условии Z=0 определяются в соответствии с выражением:

При этом длина вектора движения постороннего предмета при условии Z=0 определяется в соответствии с выражением:

Согласно предлагаемому изобретению, третья группа входов вычислителя 11 дополнительно соединена с выходами первого 3 и второго 4 измерительных приборов, благодаря чему на основе зафиксированных ими моментов пролета постороннего предмета t1, t2, t3, t4 вычислитель 11 определяет методом наименьших квадратов оценки скорости и ускорения постороннего предмета в соответствии с выражением:

где - операция нахождения обратной матрицы, - транспонирование матрицы.

С выходов вычислителя 11 сигналы поступают на соответствующие входы индикатора 12 углов подлета постороннего предмета к плоскости выходной апертуры воздухозаборника, индикатора 13 координат попадания постороннего предмета на плоскость выходной апертуры воздухозаборника и дополнительно индикатора 20 скорости и ускорения движения постороннего предмета.

Таким образом, предлагаемое изобретение обеспечивает повышение информативности определения попадания посторонних предметов в воздухозаборник воздушного судна с турбореактивным двигателем.

Предлагаемый способ определения попадания посторонних предметов в воздухозаборник воздушного судна с турбореактивным двигателем практически применим, так как для его реализации могут быть использованы типовые элементы, широко распространенные в области электротехники и электроники.

Похожие патенты RU2776325C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ УСЛОВИЙ ПОПАДАНИЯ ПОСТОРОННИХ ПРЕДМЕТОВ В ВОЗДУХОЗАБОРНИК ВОЗДУШНОГО СУДНА С ТУРБОРЕАКТИВНЫМ ДВИГАТЕЛЕМ 2021
  • Кузнецов Виктор Андреевич
  • Нескоромный Евгений Вячеславович
  • Кинякин Виталий Александрович
  • Бороздин Сергей Александрович
  • Артанов Владислав Владимирович
RU2782849C1
СПОСОБ ОПРЕДЕЛЕНИЯ УСЛОВИЙ ПОДХОДА СНАРЯДА К МИШЕНИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Ефанов Василий Васильевич
  • Мужичек Сергей Михайлович
  • Мелехов Александр Евгеньевич
  • Мелехов Сергей Евгеньевич
RU2518853C2
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК РАССЕИВАНИЯ СНАРЯДОВ ПРИ СТРЕЛЬБЕ ИЗ АРТИЛЛЕРИЙСКОГО ОРУЖИЯ И ИНФОРМАЦИОННО-ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Ефанов Василий Васильевич
  • Мужичек Сергей Михайлович
  • Любарчук Федор Николаевич
  • Шутов Петр Владимирович
RU2565802C1
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ОСКОЛОЧНОГО ПОЛЯ СНАРЯДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Мужичек Сергей Михайлович
  • Ефанов Василий Васильевич
  • Скрынников Андрей Александрович
  • Новиков Игорь Алексеевич
RU2470310C1
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ОСКОЛОЧНОГО ПОЛЯ СНАРЯДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Мужичек Сергей Михайлович
  • Ефанов Василий Васильевич
  • Шутов Петр Владимирович
RU2482440C1
СПОСОБ ОПРЕДЕЛЕНИЯ БАЛЛИСТИЧЕСКИХ ХАРАКТЕРИСТИК СНАРЯДОВ И ИНФОРМАЦИОННО-ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Ефанов Василий Васильевич
  • Мужичек Сергей Михайлович
  • Шутов Петр Владимирович
  • Коростелёв Сергей Юрьевич
RU2576333C1
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ОСКОЛОЧНОГО ПОЛЯ СНАРЯДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Мужичек Сергей Михайлович
  • Ефанов Василий Васильевич
  • Шутов Петр Владимирович
RU2498317C1
СПОСОБ ОПРЕДЕЛЕНИЯ БАЛЛИСТИЧЕСКИХ ХАРАКТЕРИСТИК СНАРЯДОВ И ИНФОРМАЦИОННО-ВЫЧИСЛИТЕЛЬНАЯ СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Ефанов Василий Васильевич
  • Мужичек Сергей Михайлович
  • Шутов Петр Владимирович
  • Коростелёв Сергей Юрьевич
RU2577077C1
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ПОЛЯ ПОРАЖЕНИЯ СНАРЯДА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Ефанов Василий Васильевич
  • Мужичек Сергей Михайлович
  • Морозов Сергей Михайлович
RU2502947C2
СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК ОСКОЛОЧНОГО ПОЛЯ СНАРЯДА В ДИНАМИКЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Мужичек Сергей Михайлович
  • Ефанов Василий Васильевич
  • Шутов Петр Владимирович
RU2498318C1

Иллюстрации к изобретению RU 2 776 325 C1

Реферат патента 2022 года СПОСОБ ОПРЕДЕЛЕНИЯ УСЛОВИЙ ПОПАДАНИЯ ПОСТОРОННИХ ПРЕДМЕТОВ В ВОЗДУХОЗАБОРНИК ВОЗДУШНОГО СУДНА С ТУРБОРЕАКТИВНЫМ ДВИГАТЕЛЕМ

Изобретение относится к области самолетостроения и может быть использовано при разработке конструктивных мер по предупреждению попадания посторонних предметов в воздухозаборник воздушного судна на этапах взлета и посадки, а также при исследовании и моделировании процессов вихреобразования и попадания посторонних предметов с поверхности взлетно-посадочной полосы в воздухозаборник. Техническим результатом изобретения является повышение информативности определения попадания посторонних предметов в воздухозаборник воздушного судна с турбореактивным двигателем. Указанный технический результат достигается за счет определения методом наименьших квадратов скорости и ускорения постороннего предмета с помощью пространственно-разнесенных вертикальной и горизонтальной линеек излучающих диодов и фотоприемников первого и второго датчиков, а также выдачи значений оценок скорости и ускорения на дополнительно введенный индикатор. 1 ил.

Формула изобретения RU 2 776 325 C1

Способ определения попадания посторонних предметов в воздухозаборник воздушного судна с турбореактивным двигателем, заключающийся в изготовлении двух датчиков в виде линеек фотоприемников, размещенных в вертикальной и горизонтальной плоскостях, размещении горизонтальных линеек первого и второго датчиков на расстоянии m1, а горизонтальной линейки первого датчика относительно мишени или плоскости выходной апертуры воздухозаборника на расстоянии m2, определении координат движения постороннего предмета, выдаче информации о координатах его пролета относительно первого и второго датчиков, фиксации динамики изменения координат постороннего предмета и на этой основе определении координат попадания постороннего предмета в плоскость выходной апертуры воздухозаборника в виде выражений: где x1, у1, х2, у2 - координаты пролета постороннего предмета относительно первого и второго датчиков, - коэффициент условия размещения второго датчика и плоскости выходной апертуры воздухозаборника, определении углов подхода постороннего предмета к плоскости выходной апертуры воздухозаборника с помощью выражений: где X, Y - координаты вектора движения постороннего предмета, согласно предлагаемому изобретению, отличающийся тем, что дополнительно размещают линейку в горизонтальной плоскости и линейку в вертикальной плоскости первого датчика на минимально возможном расстоянии m21, линейку в горизонтальной плоскости и линейку в вертикальной плоскости второго датчика на минимально возможном расстоянии m43, линейку в вертикальной плоскости первого датчика и линейку в горизонтальной плоскости второго датчика на максимально возможном расстоянии m32, при этом расстояние от горизонтальной линейки первого датчика до горизонтальной линейки второго датчика составит m31, от горизонтальной линейки первого датчика до вертикальной линейки второго датчика - m41, от вертикальной линейки первого датчика до вертикальной линейки второго датчика - m42, фиксируют сработавшие элементы горизонтальных и вертикальных линеек фотоприемников первого t1, t2 и второго t3, t4 датчиков в моменты пролета постороннего предмета, вычисляют методом наименьших квадратов оценки скорости и ускорения согласно выражению: где

- операция нахождения обратной матрицы, - транспонирование матрицы, выдают информацию о скорости и ускорении постороннего предмета на дополнительный индикатор.

Документы, цитированные в отчете о поиске Патент 2022 года RU2776325C1

СПОСОБ ОПРЕДЕЛЕНИЯ УСЛОВИЙ ПОДХОДА СНАРЯДА К МИШЕНИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Ефанов Василий Васильевич
  • Мужичек Сергей Михайлович
  • Мелехов Александр Евгеньевич
  • Мелехов Сергей Евгеньевич
RU2518853C2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СКОРОСТИ МЕТАЕМОГО ТЕЛА 2006
  • Ефанов Василий Васильевич
  • Мужичек Сергей Михайлович
RU2326388C1
СПОСОБ ИЗМЕРЕНИЯ СКОРОСТИ ДВИЖЕНИЯ ОБЪЕКТА 2015
  • Левченко Михаил Александрович
RU2593442C1
US 2011116073 A1, 19.05.2011.

RU 2 776 325 C1

Авторы

Кузнецов Виктор Андреевич

Нескоромный Евгений Вячеславович

Кинякин Виталий Александрович

Артанов Владислав Владимирович

Иванов Станислав Леонидович

Даты

2022-07-18Публикация

2021-06-07Подача