СПОСОБ ОПРЕДЕЛЕНИЯ ФАКТИЧЕСКОЙ ЧАСТОТЫ КОЛЕБАНИЙ КВАРЦЕВОГО ПОЛУСФЕРИЧЕСКОГО РЕЗОНАТОРА ВОЛНОВОГО ТВЕРДОТЕЛЬНОГО ГИРОСКОПА Российский патент 2022 года по МПК G01R23/00 

Описание патента на изобретение RU2785080C1

Изобретение относится к измерительной технике и может быть использовано для определения частоты колебаний физических величин с высокой точностью, в том числе для определения частоты колебаний кварцевого полусферического резонатора волнового твердотельного гироскопа (ВТГ).

Известен способ измерения резонансной частоты [1], осуществляющий режим поиска, в котором на каждой итерации на вход резонатора подают сигналы с частотами и находящимися в диапазоне измерения измеряемой резонансной частоты, измеряют амплитуды сигналов на выходе резонатора и соответствующие указанным частотам, а затем вычисляют частоту по формуле:

где b и h - параметры, определяющие время настройки на резонансную частоту и точность измерения этой частоты. Недостатком этого способа является то, что по принципу исследования он применим для высокочастотных систем с низкой добротностью (по сравнению с кварцевым полусферическим резонатором). Колебательные системы с высокой добротностью обладают узкой полосой пропускания по уровню 0.7.

Также известен способ измерения резонансной частоты [2], основанный на последовательном возбуждении в резонаторе колебаний различных частот из заданного набора, фиксирования этих частот и соответствующих им значений амплитуды выходного сигнала резонатора. Для каждой из частот возбуждения фиксируют амплитуду выходного сигнала после затухания переходного процесса в резонаторе, аппроксимируют полученную дискретную зависимость амплитуды от частоты непрерывной функцией и резонансную частоту резонатора определяют по максимуму этой функции. Недостатком этого способа является ограничение на вычислительную мощность используемой аппаратуры, поскольку построение дискретной амплитудно-частотной характеристики занимает длительное время, что увеличивает время функциональной готовности.

Наиболее близким к предлагаемому техническому решению является способ измерения частоты гармонических колебаний [3], включающий операции аналого-цифрового преобразования сигнала, запоминания его значений в N следующих одна за другой триадах моментов времени, отличающийся тем, что частоту сигнала а? определяют в соответствии с выражением:

где T - период дискретизации (с);

U1i, U2i, U3i - значения кодов по выходу аналого-цифрового преобразователя (АЦП) в i-ой триаде отсчетов, причем выбор частоты дискретизации сигнала, расстановку триад во времени и выбор их количества осуществляют и условия:

Частоту дискретизации напряжений измеряемого сигнала задают из условия:

где Fсигн - верхняя частота ожидаемого диапазона частот сигнала.

Предлагаемый в патенте способ обладает недостатком, заключающимся в том, что использование метода наименьших квадратов для вычисления частоты в условиях низкого отношения сигнал-шум не позволяет с высокой точностью (порядка единиц (мГц) определить искомую величину за короткий промежуток времени (порядка 100 (мс). В случае применения данного способа для измерения частоты колебательной системы с высокой добротностью (Q>107) требуется высокая точность при минимальном времени обработки измерительной информации.

Задачей предлагаемого изобретения является разработка способа определения фактической частоты колебаний кварцевого полусферического резонатора ВТГ в условиях низкого отношения сигнал-шум при минимальном времени обработки измерительной информации.

Поставленная задача решается тем, что предложен способ определения фактической частоты колебаний кварцевого полусферического резонатора ВТГ, характеризующийся тем, что используются отсчеты аналого-цифрового преобразователя, для определения измеряемой частоты применяется метод наименьших квадратов в триады моментов времени. Результаты аналого-цифрового преобразования реакции колебательной системы на первоначальное возмущающее воздействие используются в качестве входной дискретной последовательности для упрощенного стационарного фильтра Калмана, включающего этап экстраполяции, на котором проводят оценку значения напряжения на текущем шаге измерения по предыдущему шагу, и этап коррекции, на котором по полученной оценке значения напряжения определяется отклонение измеренного напряжения от ожидаемого значения напряжения. В зависимости от полученной матрицы отклонения, определяется текущая оценка значения напряжения, затем полученная оценка значения напряжения используется в качестве входной дискретной последовательности для переопределенной системы линейных алгебраических уравнений. Фактическая частота измеряемых колебаний определяется с помощью рекуррентной реализации метода наименьших квадратов для решения переопределенной системы линейных алгебраических уравнений.

В предлагаемом способе определение фактической частоты колебаний кварцевого полусферического резонатора разделено на 4 этапа:

1) Измерение реакции колебательной системы на первоначальное возмущающее воздействие, описываемое уравнением:

где U0 - амплитуда сигнала (В);

- теоретическая собственная частота (рад/с);

ϕ0 - начальная фаза воздействия (рад);

U1 - постоянное смещение (В);

t - время (с).

Измерение реакции колебательной системы на первоначальное возмущающее воздействие происходит с частотой ωАЦП:

2) Этап экстраполяции, заключающийся в оценке значения напряжения на текущем шаге измерения по предыдущему шагу (начальные условия нулевые):

где - экстраполяция вектора состояния процесса с шага n-1 на текущий шаг, размерность 2×1;

- значение вектора состояния процесса на предыдущий шаг, размерность вектора 2×1;

F - матрица эволюции процесса размерности 2×2:

где Δt - шаг дискретизации (с).

3) Этап коррекции, в котором, по полученной оценке значения напряжения на текущем шаге по предыдущему шагу, определяется отклонение и, в зависимости от полученной матрицы отклонения, определяется текущая оценка :

где - отклонение измерения, полученного на k-ом шаге, от ожидаемого наблюдения;

Uk - значение измеряемой величины на текущем шаге;

Kk - оптимальная матрица коэффициентов усиления Калмана, размерностью 2×1.

Поскольку ожидаемое наблюдение оценивается по значению координаты матрица измерений H применена следующей:

Полученная дискретная последовательность оценки координаты используется в следующем этапе.

4) Определение фактической частоты измеряемых колебаний с помощью рекуррентного решения переопределенной системы линейных алгебраических уравнений методом наименьших квадратов. Искомая частота ωизм, определяется из следующего выражения:

где Un-2+k, Un+k, Un+2+k - значения измеряемой величины, взятые в моменты времени, отстоящие друг от друга на два периода опроса. В соответствии с методом наименьших квадратов, числитель и знаменатель правой части выражения (7) составляют вектор-столбцы переопределенной системы алгебраических уравнений. В этом случае, выражение (7) принимает вид (8).

где A и B - вектор-столбцы, определяемые знаменателем и числителем выражения (7), соответственно. Произведения в правой части определены рекурсивно:

где ak и bk - компоненты вектор-столбцов A и B, определяемые на k-ом шаге.

Фактическая частота определяется по истечении времени измерения в соответствии с выражением (11):

где - период дискретизации (с).

Для подтверждения возможности осуществления заявляемого способа использован экспериментальный стенд (см. чертеж). Состав стенда: 1 - измерительный электрод ВТГ, 2 - усилитель съема, 3 - предварительный фильтр, 4 - аналого-цифровой преобразователь, 5 - микроконтроллер, 6 - синтезатор частоты, 7 - электрод возбуждения ВТГ.

Принцип работы устройства заключается в следующем: на электрод возбуждения 7 ВТГ подается переменное напряжение с синтезатора частоты 6 в соответствии с выражением (1). Реакция на сигнал возбуждения принимается с измерительного электрода 1 ВТГ и подается на усилитель съема 2. Полученный сигнал, проходя через предварительный фильтр 3, подается на вход аналого-цифрового преобразователя 4, после чего в цифровой форме передается в микроконтроллер 5 для предварительной фильтрации и измерения частоты в соответствии с заявленным способом.

Таким образом, предложен способ определения фактической частоты колебаний кварцевого полусферического резонатора ВТГ, характеризующийся тем, что используются отсчеты аналого-цифрового преобразователя, для определения измеряемой частоты применяется метод наименьших квадратов в триады моментов времени. Результаты аналого-цифрового преобразования реакции колебательной системы на первоначальное возмущающее воздействие используются в качестве входной дискретной последовательности для упрощенного стационарного фильтра Калмана, включающего этап экстраполяции, на котором проводят оценку значения напряжения на текущем шаге измерения по предыдущему шагу, и этап коррекции, на котором по полученной оценке значения напряжения определяется отклонение измеренного напряжения от ожидаемого значения напряжения. В зависимости от полученной матрицы отклонения, определяется текущая оценка значения напряжения, затем полученная оценка значения напряжения используется в качестве входной дискретной последовательности для переопределенной системы линейных алгебраических уравнений. Фактическая частота измеряемых колебаний определяется с помощью рекуррентной реализации метода наименьших квадратов для решения переопределенной системы линейных алгебраических уравнений.

Применение фильтра Калмана для предварительной фильтрации, позволяет увеличить отношение сигнал-шум, тем самым улучшить начальные условия для определения частоты. Реализация фильтра Калмана не накладывает ограничения на применяемую элементную базу.

Техническим результатом применения предлагаемого способа является уменьшение времени функциональной готовности ВТГ за счет уменьшения времени возбуждения кварцевого полусферического резонатора, определение фактической частоты колебаний кварцевого полусферического резонатора в условиях низкого отношения сигнал-шум (≈ 10-4 Гц) на частоте дискретизации 20 кГц при отношении сигнал-шум 25 дБ по сравнению с точностью наиболее близкого аналога (≈ 10-3 Гц) при тех же условиях.

Источники информации

1. Патент RU 2691291 «Способ измерения резонансной частоты».

2. Патент RU 2536833 «Способ измерения резонансной частоты».

3. Патент RU 2111496 «Способ измерения частоты гармонических колебаний».

4. Kalman R.E. A New Approach to Linear Filtering and Prediction Problems // Transactions of the ASME - Journal of Basic Engineering. - 1960. - №82. - P. 35-45.

Похожие патенты RU2785080C1

название год авторы номер документа
Способ определения угловой скорости с использованием волнового твердотельного гироскопа 2019
  • Соколов Сергей Викторович
  • Погорелов Вадим Алексеевич
  • Савенкова Елена Викторовна
  • Шаталов Андрей Борисович
  • Гашененко Игорь Николаевич
RU2729944C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ВОЛНОВОГО ТВЕРДОТЕЛЬНОГО ГИРОСКОПА 2013
  • Маслов Александр Анатольевич
  • Меркурьев Игорь Владимирович
  • Маслов Дмитрий Александрович
RU2544308C9
СПОСОБ ОПРЕДЕЛЕНИЯ УГЛОВОЙ СКОРОСТИ С ИСПОЛЬЗОВАНИЕМ ВОЛНОВОГО ТВЕРДОТЕЛЬНОГО ГИРОСКОПА 2020
  • Соколов Сергей Викторович
  • Погорелов Вадим Алексеевич
  • Шаталов Андрей Борисович
  • Савенкова Елена Викторовна
  • Гашененко Игорь Николаевич
RU2750428C1
СПОСОБ ПРЕЦИЗИОННЫХ ИЗМЕРЕНИЙ АМПЛИТУДЫ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ СВЕРХНИЗКИХ И ЗВУКОВЫХ ЧАСТОТ ПРИ СИЛЬНОЙ ЗАШУМЛЕННОСТИ СИГНАЛА 2019
  • Уткин Петр Михайлович
  • Кожевников Андрей Юрьевич
RU2714861C1
ОЦЕНКА ОШИБОК И ЦЕЛОСТНОСТИ ПОСРЕДСТВОМ ПРОГНОЗИРОВАНИЯ ПЕРЕМЕЩЕНИЯ 2020
  • Кубина, Бернд
  • Бургхардт, Роланд
  • Боденхаймер, Роберт
RU2789700C1
СПОСОБ СОПРОВОЖДЕНИЯ ОБЪЕКТА И СПОСОБ ФОРМИРОВАНИЯ СИГНАЛА УПРАВЛЕНИЯ ПОЛОЖЕНИЕМ ЛУЧА ПРИЕМНО-ПЕРЕДАЮЩЕГО АНТЕННОГО УСТРОЙСТВА СИСТЕМЫ СОПРОВОЖДЕНИЯ ОБЪЕКТА 2011
  • Степаничев Игорь Вениаминович
  • Слугин Валерий Георгиевич
  • Петрушин Владимир Васильевич
  • Мартынец Валерий Николаевич
  • Григоров Александр Викторович
RU2476904C1
СПОСОБ ОСУЩЕСТВЛЕНИЯ АВТОМАТИЗИРОВАННОЙ АУТЕНТИФИКАЦИИ ПОЛЬЗОВАТЕЛЯ НА ОСНОВАНИИ ЕГО ПОДПИСИ 2017
  • Югай Евгений Борисович
  • Ашманов Станислав Игоревич
RU2671305C1
СПОСОБ ИЗМЕРЕНИЯ РЕЗОНАНСНОЙ ЧАСТОТЫ 2012
  • Иванов Александр Васильевич
  • Лункин Борис Васильевич
  • Фатеев Валерий Яковлевич
RU2536833C2
СПОСОБ ИЗМЕРЕНИЯ РЕЗОНАНСНОЙ ЧАСТОТЫ И ДОБРОТНОСТИ 2020
  • Фатеев Валерий Яковлевич
RU2765836C2
СПОСОБ УСТАНОВКИ КОЛЬЦЕВОГО ЗАЗОРА ПРИ СБОРКЕ ВОЛНОВОГО ТВЕРДОТЕЛЬНОГО ГИРОСКОПА 2013
  • Басараб Михаил Алексеевич
  • Лунин Борис Сергеевич
  • Матвеев Валерий Александрович
RU2546987C1

Иллюстрации к изобретению RU 2 785 080 C1

Реферат патента 2022 года СПОСОБ ОПРЕДЕЛЕНИЯ ФАКТИЧЕСКОЙ ЧАСТОТЫ КОЛЕБАНИЙ КВАРЦЕВОГО ПОЛУСФЕРИЧЕСКОГО РЕЗОНАТОРА ВОЛНОВОГО ТВЕРДОТЕЛЬНОГО ГИРОСКОПА

Изобретение относится к измерительной технике. Способ определения фактической частоты колебаний кварцевого полусферического резонатора волнового твердотельного гироскопа заключается в том, что используются отсчеты аналого-цифрового преобразователя, для определения измеряемой частоты применяется метод наименьших квадратов в триады моментов времени. Результаты аналого-цифрового преобразования реакции колебательной системы на первоначальное возмущающее воздействие используются в качестве входной дискретной последовательности для упрощенного стационарного фильтра Калмана, включающего этап экстраполяции и этап коррекции. В зависимости от полученной матрицы отклонения определяется текущая оценка значения напряжения, затем полученная оценка значения напряжения используется в качестве входной дискретной последовательности для переопределенной системы линейных алгебраических уравнений. Фактическая частота измеряемых колебаний определяется с помощью рекуррентной реализации метода наименьших квадратов для решения переопределенной системы линейных алгебраических уравнений. Технический результат - уменьшение времени функциональной готовности ВТГ за счет уменьшения времени возбуждения кварцевого полусферического резонатора, определение фактической частоты колебаний кварцевого полусферического резонатора в условиях низкого отношения сигнал-шум. 1 ил.

Формула изобретения RU 2 785 080 C1

Способ определения фактической частоты колебаний кварцевого полусферического резонатора волнового твердотельного гироскопа, характеризующийся тем, что используются отсчеты аналого-цифрового преобразователя, для определения измеряемой частоты применяется метод наименьших квадратов в триады моментов времени, отличающийся тем, что результаты аналого-цифрового преобразования реакции колебательной системы на первоначальное возмущающее воздействие используются в качестве входной дискретной последовательности для упрощенного стационарного фильтра Калмана, включающего этап экстраполяции, на котором проводят оценку значения напряжения на текущем шаге измерения по предыдущему шагу, и этап коррекции, на котором по полученной оценке значения напряжения определяется отклонение измеренного напряжения от ожидаемого значения напряжения и, в зависимости от полученной матрицы отклонения, определяется текущая оценка значения напряжения; затем полученная оценка значения напряжения используется в качестве входной дискретной последовательности для переопределенной системы линейных алгебраических уравнений; фактическая частота измеряемых колебаний определяется с помощью рекуррентной реализации метода наименьших квадратов для решения переопределенной системы линейных алгебраических уравнений.

Документы, цитированные в отчете о поиске Патент 2022 года RU2785080C1

СПОСОБ ИЗМЕРЕНИЯ ЧАСТОТЫ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ 1992
  • Слюсар Вадим Иванович[Ua]
  • Покровский Владимир Иванович[Ua]
  • Сахно Валентин Филиппович[Ua]
  • Слюсарь Игорь Иванович[Ua]
RU2111496C1
СПОСОБ ИЗМЕРЕНИЯ НЕСТАБИЛЬНОСТИ ЧАСТОТЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Давыдов И.В.
  • Провоторов Г.Ф.
  • Щеголеватых А.С.
RU2256928C2
СПОСОБ ОСУЩЕСТВЛЕНИЯ АВТОМАТИЗИРОВАННОЙ АУТЕНТИФИКАЦИИ ПОЛЬЗОВАТЕЛЯ НА ОСНОВАНИИ ЕГО ПОДПИСИ 2017
  • Югай Евгений Борисович
  • Ашманов Станислав Игоревич
RU2671305C1
WO 2010080383 A1, 15.07.2010
US 20050031139 A1, 10.02.2005
CN 109655050 B, 24.04.2020
AU 3288097 A, 05.01.1998
US 6698287 B2, 02.03.2004
CN 108489475 B, 20.10.2020.

RU 2 785 080 C1

Авторы

Хохлов Иван Сергеевич

Чайковский Михаил Михайлович

Коробков Николай Владимирович

Сапожников Александр Илариевич

Даты

2022-12-02Публикация

2022-02-18Подача