Способ определения интегральной полусферической степени черноты поверхностей твердых тел и покрытий Российский патент 2023 года по МПК G01J5/12 G01N21/72 

Описание патента на изобретение RU2787966C1

Изобретение относится к теплофизике в области теплообмена излучением и заключается в разработке способа определения интегральной полусферической степени черноты поверхностей твердых тел и покрытий.

Известны способы определения интегральной полусферической степени черноты, использующие материалы с эталонными радиационными и теплофизическими характеристиками.

В патентах RU 2510491 С2, МПК G01J 5/12, 27.03.2014; SU 770333 А1, МПК G01J 5/12, 20.11.2005; RU 2521131 С1, МПК G01N 25/20, 27.06.2014 реализованы способы, основанные на сравнении результатов испытания в одних и тех же условиях исследуемой поверхности, интегральную полусферическую степень черноты которой требуется определить, с результатами испытания эталонной поверхности с известной интегральной полусферической степенью черноты.

В патентах RU 2598699 С1, МПК G01J 5/12, 27.03.2016; RU 2295720 С1, МПК G01N 25/18, 20.03.2007; RU 2192000 С1, МПК G01N 25/18, 27.10.2007 реализованы калориметрические способы, основанные на использовании в качестве калориметра пластины из эталонного материала с известной объемной теплоемкостью.

В литературе (Известия Томского политехнического университета. Инжиниринг георесурсов. 2016. Т. 327. №5. 106-115) также описаны способы, использующие для фиксации подводимого к образцу теплового потока элементов из эталонного материала с известным коэффициентом теплопроводности.

Недостатками вышеуказанных способов является увеличение объема испытаний, необходимость иметь запас эталонных образцов, наличие погрешности в значении эталонных характеристик.

Известен способ, сведения о котором опубликованы в "Ученых записках ЦАГИ", 2018. Т. XLIX. №4. с. 83-88. В данном способе не используются никакие дополнительные эталонные материалы и их свойства. Именно этот способ и был взят в качестве прототипа.

Способ определения температурной зависимости интегральной полусферической степени черноты, реализованный в прототипе, состоит в испытании образца, состоящего из двух параллельно расположенных пластин (с минимальным размером в плане не менее 100 мм и толщиной не более 8 мм в зависимости от материала пластины) в вакууме. Пластины расположены на расстоянии 2-3 мм друг от друга. Наружную поверхность одной из пластин образца последовательно нагревают до различных температур в заданном диапазоне, а внешняя поверхность второй пластины излучает радиационный тепловой поток в окружающую среду.

В процессе испытания, при достижении на каждой ступени нагрева стационарного состояния фиксируют с помощью термопар температуры на внутренних поверхностях пластин Т1 и Т2 и на внешней поверхности второй пластины Т3. Из условия равенства радиационных тепловых потоков между пластинами и с наружной поверхности второй пластины

имеем расчетное выражение для температуры на каждой ступени нагрева.

Температурную зависимость интегральной полусферической степени черноты (ε(Т)) представляют в виде линейного сплайна, параметры которого определяются из условия наилучшего совпадения расчетных и экспериментальных температур Т2 на всех ступенях нагрева решением обратной задачи

где K - число обрабатываемых ступеней нагрева, М - число узлов сплайна.

Недостатками этого способа являются сложная конструкция образца, состоящего из двух параллельно расположенных пластин, достаточно большое число измерений в эксперименте и сложный алгоритм обработки результатов испытаний.

Задачей и техническим результатом настоящего изобретения является разработка способа, позволяющего уменьшить число измерений, упростить обработку экспериментальных данных, повысить точность и достоверность получаемых результатов, обеспечить испытания в вакууме или в газовой среде.

Решение задачи и технический результат достигаются тем, что в способе определения интегральной полусферической степени черноты поверхностей твердых тел и покрытий, состоящем в том, что испытывают в вакууме или в газовой среде образец в виде пластины, нагревают пластину со стороны, противоположной исследуемой поверхности, до заданной температуры и выдерживают до установления стационарного состояния, при этом исследуемая поверхность пластины излучает радиационный тепловой поток в окружающую среду, на расстоянии 2-3 мм от исследуемой поверхности размещают горизонтально и параллельно поверхности пластины свободную термопару, определяют температуру исследуемой поверхности Tn, фиксируют показание свободной термопары Tm и температуру окружающей среды Тс и вычисляют интегральную полусферическую степень черноты поверхности по формуле

где ϕnm - коэффициент облученности термопары поверхностью образца,

α - коэффициент теплоотдачи от термопары при свободной конвекции

εm - степень черноты термопары

Изобретение поясняется фигурами

На фиг. 1 приведена схема прототипа

На фиг. 2 приведена схема предлагаемого изобретения

На фиг. 3 приведена полученная данным способом температурная зависимость интегральной полусферической степени черноты углерод-углеродного материала в интересующем диапазоне температур.

Поставленная задача решается согласно настоящему изобретению тем, что испытывают в вакууме или в газовой среде образец 1, состоящий из одной пластины с одной исследуемой поверхностью 2, и размещенной в газовой среде вертикально (при испытании в вакууме расположение образца произвольно). Для обеспечения высокой величины коэффициента облученности термопары поверхностью образца на расстоянии 2-3 мм от исследуемой поверхности размещают горизонтально и параллельно исследуемой поверхности пластины 2 свободную термопару 3, сваренную встык. Со стороны, противоположной исследуемой поверхности 2, нагревают пластину до заданной температуры и выдерживают до установления стационарного состояния, при этом исследуемая поверхность пластины излучает радиационный тепловой поток в окружающую среду, определяют температуру поверхности Tn, фиксируют показание свободной термопары Tm и температуру окружающей среды Тс (при испытании в атмосфере Тс равна температуре воздуха, в вакуумной камере-температуре стенки камеры).

При этом уравнение теплового баланса термопары имеет вид

где ϕnm - коэффициент облученности термопары поверхностью образца,

εm - степень черноты термопары;

εn - интегральная полусферическая степень черноты поверхности;

σ - постоянная Стефана-Больцмана;

Dm - диаметр термопары, м;

π - число пи.

α - коэффициент теплоотдачи от термопары при свободной конвекции.

Последний вычисляется по формуле

где

где - критерий Нуссельта

- критерий Прандтля

GrD - критерий Грасгофа

λƒ - коэффициент теплопроводности,

αƒ - коэффициент температуропроводности,

vƒ - коэффициент кинематической вязкости,

b - коэффициент температурного расширения,

g - ускорение свободного падения.

Индекс ƒ указывает, что физические свойства газа должны браться при

Из уравнения теплового баланса имеем следующее выражение для вычисления степени интегральной полусферической черноты поверхности

где ϕnm - коэффициент облученности термопары поверхностью образца,

α - коэффициент теплоотдачи от термопары при свободной конвекции.

εm - степень черноты термопары

Проводя нагрев до различных температур, получают температурную зависимость интегральной полусферической степени черноты в интересующем диапазоне температур. Полученные величины интегральной полусферической степени черноты находятся в зоне значений степени черноты для углерод-углеродных материалов (фиг. 3).

В разработанном способе не используются материалы с эталонными радиационными или теплофизическими характеристиками, существенно упрощены конструкция образца (одна пластина вместо двух) и эксперимент (вместо измерений температуры на трех поверхностях измерение проводится только на одной), а также обработка экспериментальных данных. Все это обеспечивает повышение точности и достоверности определения интегральной полусферической степени черноты,

Похожие патенты RU2787966C1

название год авторы номер документа
Способ определения степени черноты поверхности натурного обтекателя ракет при тепловых испытаниях и установка для его реализации 2018
  • Русин Михаил Юрьевич
  • Забежайлов Максим Олегович
  • Часовской Евгений Николаевич
  • Миронов Роман Александрович
  • Неповинных Виктор Иванович
RU2694115C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ СТЕПЕНИ ЧЕРНОТЫ (ВАРИАНТЫ) 2015
  • Ходжаев Юрий Джураевич
  • Юдин Валерий Михайлович
RU2598699C1
Способ определения температуры поверхности пластины 2022
  • Юдин Валерий Михайлович
  • Юдин Александр Валерьевич
  • Ходжаев Юрий Джураевич
  • Суслин Владимир Владимирович
RU2785062C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СТЕПЕНИ ЧЕРНОТЫ 2012
  • Лаповок Евгений Владимирович
  • Пеньков Максим Михайлович
  • Слинченко Дмитрий Анатольевич
  • Уртминцев Игорь Александрович
  • Ханков Сергей Иванович
RU2521131C2
Способ управления нестационарным радиационным нагревом образца конструкции летательного аппарата 2023
  • Юдин Валерий Михайлович
  • Юдин Александр Валерьевич
RU2818683C1
СПОСОБ ИЗМЕРЕНИЯ СТЕПЕНИ ЧЕРНОТЫ 2012
  • Лаповок Евгений Владимирович
  • Пеньков Максим Михайлович
  • Слинченко Дмитрий Анатольевич
  • Уртминцев Игорь Александрович
  • Ханков Сергей Иванович
RU2510491C2
СПОСОБ ИЗМЕРЕНИЯ ИНТЕГРАЛЬНОЙ ИЗЛУЧАТЕЛЬНОЙ СПОСОБНОСТИ С ПОМОЩЬЮ ПРЯМОГО ЛАЗЕРНОГО НАГРЕВА (ВАРИАНТЫ) 2015
  • Брыкин Михаил Владимирович
  • Васин Андрей Андреевич
  • Шейндлин Михаил Александрович
RU2597937C1
Способ измерения интегрального коэффициента излучения поверхности твердого материала 2018
  • Архипов Владимир Афанасьевич
  • Жуков Александр Степанович
  • Жарова Ирина Константиновна
  • Гольдин Виктор Данилович
  • Перфильева Ксения Григорьевна
  • Романдин Владимир Иванович
  • Маслов Евгений Анатольевич
  • Кузнецов Валерий Тихонович
RU2688911C1
СПОСОБ ИЗМЕРЕНИЯ ИНТЕГРАЛЬНОГО КОЭФФИЦИЕНТА ИЗЛУЧЕНИЯ ПОВЕРХНОСТИ ТЕПЛОЗАЩИТНЫХ МАТЕРИАЛОВ 2011
  • Архипов Владимир Афанасьевич
  • Жарова Ирина Константиновна
  • Гольдин Виктор Данилович
  • Куриленко Николай Ильич
RU2468360C1
УСТРОЙСТВО И СПОСОБ ИЗМЕРЕНИЯ ПЛОТНОСТИ ПАДАЮЩИХ ТЕПЛОВЫХ ПОТОКОВ ПРИ ТЕПЛОВАКУУМНЫХ ИСПЫТАНИЯХ КОСМИЧЕСКИХ АППАРАТОВ 2021
  • Баранчиков Владимир Александрович
  • Басов Андрей Александрович
  • Овчинников Дмитрий Николаевич
RU2773268C1

Иллюстрации к изобретению RU 2 787 966 C1

Реферат патента 2023 года Способ определения интегральной полусферической степени черноты поверхностей твердых тел и покрытий

Изобретение относится к области теплофизики и касается способа определения интегральной полусферической степени черноты поверхностей твердых тел и покрытий. Способ состоит в том, что нагревают состоящий из одной пластины с исследуемой поверхностью образец со стороны, противоположной исследуемой поверхности, до заданной температуры и выдерживают до установления стационарного состояния. Свободную термопару размещают горизонтально и параллельно исследуемой поверхности пластины на расстоянии 2-3 мм от исследуемой поверхности. Определяют температуру исследуемой поверхности Tn, фиксируют показание свободной термопары Tm и температуру окружающей среды Тс. По полученным данным вычисляют интегральную полусферическую степень черноты. Технический результат заключается в уменьшении числа измерений, упрощении обработки экспериментальных данных, повышении точности и достоверности получаемых результатов и обеспечении возможности проведения измерений в вакууме и газовой среде. 3 ил.

Формула изобретения RU 2 787 966 C1

Способ определения интегральной полусферической степени черноты поверхностей твердых тел и покрытий, состоящий в том, что нагревают образец со стороны, противоположной исследуемой поверхности, до заданной температуры и выдерживают до установления стационарного состояния, отличающийся тем, что устанавливают образец, состоящий из одной пластины с исследуемой поверхностью, размещают горизонтально и параллельно исследуемой поверхности пластины свободную термопару на расстоянии 2-3 мм от исследуемой поверхности, определяют температуру исследуемой поверхности Tn, фиксируют показание свободной термопары Tm и температуру окружающей среды Тс и вычисляют интегральную полусферическую степень черноты поверхности по формуле

где ϕnm - коэффициент облученности термопары поверхностью образца;

α - коэффициент теплоотдачи от термопары при свободной конвекции;

εm - степень черноты термопары.

Документы, цитированные в отчете о поиске Патент 2023 года RU2787966C1

Д
В
Бугров, В
М
Юдин "Обратная задача определения температурной зависимости интегральной полусферической степени черноты", УЧЕНЫЕ ЗАПИСКИ ЦАГИ, т
XLIХ, No 6, стр
Пуговица 0
  • Эйман Е.Ф.
SU83A1
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СТЕПЕНИ ЧЕРНОТЫ 2012
  • Лаповок Евгений Владимирович
  • Пеньков Максим Михайлович
  • Слинченко Дмитрий Анатольевич
  • Уртминцев Игорь Александрович
  • Ханков Сергей Иванович
RU2521131C2
CN 102072916 B, 05.06.2013
US 2006067376 A1, 30.03.2006.

RU 2 787 966 C1

Авторы

Юдин Валерий Михайлович

Юдин Александр Валерьевич

Даты

2023-01-13Публикация

2022-02-11Подача