СПОСОБ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД, СОДЕРЖАЩИХ СЕРОВОДОРОД И СУЛЬФИД-ИОНЫ Российский патент 2023 года по МПК C02F1/56 C02F1/58 C02F1/68 

Описание патента на изобретение RU2789632C1

Изобретение относится к технологиям очистки природных и сточных вод и может быть использовано для очистки вод, содержащих сульфид-анионы, а также молекулярный сероводород.

Известно, что сероводород является токсичным газом. Он опасен и при появлении в воздухе рабочей зоны и при попадании через сточные воды в водоемы рыбохозяйственного и культурно-бытового назначения.

В результате аварийных ситуаций сульфид-ионы, а также молекулярный сероводород могут попадать в природные и сточные воды. Обладая повышенной миграционной способностью, они практически не задерживаются на централизованных очистных сооружениях станций водоподготовки.

Удаление из воды сероводорода - процесс очистки воды с целью ее дезодорации и стабилизации физическими (аэрация), химическими (использование сильных окислителей) и биохимическими (окисление спец. бактериями) методами.

Сероводород в зависимости от рН воды может находиться в молекулярном состоянии H2S и в виде ионов HS- и S2-. Аэрированием удаляется только та часть сероводорода, которая представлена H2S (частично HS-). Полное удаление H2S аэрированием возможно лишь при подкислении воды до рН<5. В этих условиях высокая концентрация водородных ионов подавляет диссоциацию сероводорода, поэтому большая часть его будет находиться в молекулярной форме, которая легко удаляется аэрированием.

Химический метод очистки обеспечивает наиболее полную дегазацию. При этом методе происходят в основном окисление сероводородных соединений или связывание их с другими молекулами и переход их в менее активную форму в воде, а также окислительно-восстановительные процессы.

Наиболее распространен метод очистки воды от сероводорода хлором. На 1 мг окисляемого сероводорода расходуется 2,1 мг хлора. В результате реакции образуется взвесь коллоидной серы в количестве, приблизительно равном количеству сероводорода или гидросульфидов. При дозе хлора 8,4 мг на 1 мг сероводорода основными продуктами реакции являются сульфаты. Для очистки воды от серы, полученной в результате химической реакции, необходимы коагуляция и фильтрование. На данной стадии возникают затруднения, связанные с малым размером образующихся коллоидных частиц.

Наиболее близким к заявляемому является "Способ очистки природных и сточных вод, содержащих ионы железа, тяжелых и цветных металлов" (патент РФ 2118296, публ. 1998 г.). В известном способе очищаемую воду обрабатывают реагентом с последующим отстаиванием и отделением осадка. В качестве реагента вводят 3-10%-ную водную суспензию смеси алкилкарбоксисилоксанов общей формулы

Реагент могут использовать как самостоятельный, так и совместно с катионным флокулянтом или коагулянтом, содержащим ионы железа или алюминия.

Высокая сорбционная емкость реагента позволяет очищать воду от ионов железа, тяжелых и цветных металлов, от взвешенных веществ и органических добавок, однако его свойства не предусматривают извлечения сульфид-ионов и молекулярного сероводорода.

Техническая задача настоящего изобретения - эффективная очистка природных и сточных вод, содержащих сульфид-, гидросульфид-ионы, а также молекулярный сероводород.

Для решения поставленной задачи в отличие от прототипа в качестве реагента вводят 3-10%-ную водную суспензию смеси алкилкарбоксисилоксанов, модифицированными карбоксильными группировками, нейтрализованными солями железа (III).

Сущность изобретения заключается в том, что наличие в химической структуре реагента карбоксильных группировок, нейтрализованных трёхвалентным железом (Fe (III)) обнаруживает высокие сорбционные свойства по отношению к сульфид и гидросульфид-ионам, а также молекулярному сероводороду. При этом реагент, при его применении в оптимальном количестве, сохраняет свою высокую сорбционную емкость по отношению к этим веществам.

Следует отметить, что выход за границы указанных концентраций суспензии реагента делает нерентабельным и технологически невозможным использование данного метода. Так как при концентрации менее 3% требуется большое количество воды, которая разбавляет раствор, а при повышении концентрации суспензии выше 10% резко возрастает вязкость суспензии, из-за чего, подача рабочего раствора насосами-дозаторами становится невозможной.

С равнение заявляемого технического решения с прототипом показывает, что оно соответствует критерию «новизна».

Способ может быть реализован с использованием известных средств, поэтому заявляемое техническое решение соответствует критерию «промышленная применимость».

В результате патентно-информационных исследований заявляемая совокупность признаков выявлена не была, поэтому заявляемое техническое решение соответствует критерию «изобретательский уровень».

Ниже приведены примеры использования предлагаемой технологии. В качестве обрабатываемой воды был взят модельный раствор, имитирующий сточные воды месторождения Жанажол (Казахстан).

ПРИМЕР 1.

Обработка воды для извлечения сероводорода осуществлялась по следующей методике. В обрабатываемую воду вносилось различное количество реагента адсорбента-коагулянта (соотношение алюмосиликатная подложка: модификатор -1:1). Концентрация суспензии реагента составляла при этом 10%.

На первой стадии процесса осуществляли интенсивное перемешивание, с целью равномерного распределения реагента по объему раствора. Спустя 5 минут интенсивного перемешивания, скорость перемешивания уменьшали и продолжали процесс в течение 10 минут. Слабое перемешивание необходимо для поддержания хлопьев реагента в объеме раствора, так как на поверхности хлопьев реагента идет активное поглощение сероводорода из обрабатываемого раствора. Спустя 10 минут, обработанный раствор фильтровали и изучали остаточное содержание сероводорода в фильтрате. Данные по извлечению серводорода представлены в таблице 1.

ПРИМЕР 2.

Обработка воды для извлечения сероводорода осуществлялась по следующей методике.

Концентрация суспензии реагента в данном примере составляла 3%.

В обрабатываемую воду вносилось различное количество реагента адсорбента-коагулянта (соотношение алюмосиликатная подложка: модификатор - 2:1). В качестве флокулянта к обрабатываемому раствору прибавляли флокулянт Pr-2500 (Праестол 2500), концентрация которого составляла 2,5 мг/л.

На первой стадии процесса осуществляли интенсивное перемешивание, с целью равномерного распределения реагента по объему раствора. Спустя 5 минут интенсивного перемешивания, скорость перемешивания уменьшали и продолжали процесс в течение 10 минут. Слабое перемешивание необходимо для поддержания хлопьев реагента в объеме раствора, так как на поверхности хлопьев реагента идет активное поглощение сероводорода из обрабатываемого раствора. Спустя 10 минут, обработанный раствор фильтровали и изучали остаточное содержание сероводорода в фильтрате.

Данные по сульфид-иону приведены в таблице 2.

ПРИМЕР 3.

Обработка воды для извлечения сероводорода осуществлялась по следующей методике.

Концентрация суспензии реагента в данном примере составляла 5%.

В обрабатываемую воду вносилось различное количество реагента адсорбента-коагулянта (соотношение алюмосиликатная подложка: модификатор - 2:1). В качестве флокулянта к обрабатываемому раствору прибавляли флокулянт Pr-2500 (Праестол 2500), концентрация которого составляла 2,5 мг/л.

На первой стадии процесса осуществляли интенсивное перемешивание, с целью равномерного распределения реагента по объему раствора. Спустя 5 минут интенсивного перемешивания, скорость перемешивания уменьшали и продолжали процесс в течение 10 минут. Слабое перемешивание необходимо для поддержания хлопьев реагента в объеме раствора, так как на поверхности хлопьев реагента идет активное поглощение сероводорода из обрабатываемого раствора. Спустя 10 минут, обработанный раствор фильтровали и изучали остаточное содержание сероводорода в фильтрате.

Данные по сульфид-иону приведены в таблице 3.

Таким образом, заявляемый способ позволяет повысить эффективность очистки природных и сточных вод, содержащих сульфид-, гидросульфид-ионы, а также молекулярный сероводород.

Похожие патенты RU2789632C1

название год авторы номер документа
СПОСОБ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД ОТ СУЛЬФИДОВ И СЕРОВОДОРОДА 2004
  • Гириков Олег Георгиевич
RU2285670C2
СПОСОБ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД ОТ СЕРОВОДОРОДА, ИОНОВ СУЛЬФИДА И ГИДРОСУЛЬФИДА 2012
  • Мазитов Леонид Асхатович
  • Финатов Алексей Николаевич
  • Финатова Ирина Леонидовна
  • Борисов Виктор Ефимович
  • Борисов Максим Викторович
  • Борисова Елена Александровна
RU2482066C1
СПОСОБ ОЧИСТКИ ДРЕНАЖНЫХ ВОД ПОЛИГОНОВ ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ 2014
  • Поворов Александр Александрович
  • Павлова Валентина Федоровна
  • Кротова Мария Витальевна
  • Шиненкова Наталья Анатольевна
  • Трифонова Татьяна Анатольевна
  • Начева Инна Ивановна
  • Корнилова Наталья Викторовна
  • Платонов Константин Николаевич
RU2589139C2
СПОСОБ ПОЛУЧЕНИЯ ВОДОРАСТВОРИМОГО РЕАГЕНТА ДЛЯ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД (ВАРИАНТЫ) 2012
  • Жохова Ольга Кузьминична
  • Богачёв Никита Александрович
  • Блинов Андрей Александрович
  • Бутов Геннадий Михайлович
  • Уткина Екатерина Евгеньевна
  • Быкадоров Николай Ульянович
RU2495829C1
СПОСОБ ОЧИСТКИ ВОДЫ ОТ СЕРОВОДОРОДА, ИОНОВ СУЛЬФИДОВ И ГИДРОСУЛЬФИДОВ 2015
  • Сахабутдинов Рифхат Зиннурович
  • Абрамов Михаил Алексеевич
  • Каграманов Георгий Гайкович
  • Лойко Андрей Владимирович
  • Ицков Станислав Викторович
  • Буслаев Евгений Сергеевич
  • Гарифуллин Рафаэль Махасимович
  • Губайдулин Фаат Равильевич
  • Кудряшова Любовь Викторовна
RU2588221C1
СПОСОБ ПОДГОТОВКИ ПЛАСТОВЫХ ВОД ДЛЯ ПОДДЕРЖАНИЯ ПЛАСТОВОГО ДАВЛЕНИЯ И СПОСОБ ПОДДЕРЖАНИЯ ПЛАСТОВОГО ДАВЛЕНИЯ НЕФТЯНЫХ ЗАЛЕЖЕЙ 2016
  • Саетгараев Рустем Халитович
  • Звездин Евгений Юрьевич
  • Шишкин Кирил Владимирович
  • Андаева Екатерина Алексеевна
  • Рязанов Алексей Дмитриевич
RU2635418C1
СПОСОБ НЕЙТРАЛИЗАЦИИ И ОЧИСТКИ СТОЧНЫХ ВОД 2000
  • Косов В.И.
  • Баженова Э.В.
RU2174107C1
СПОСОБ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД, СОДЕРЖАЩИХ ИОНЫ ЖЕЛЕЗА, ТЯЖЕЛЫХ И ЦВЕТНЫХ МЕТАЛЛОВ 1995
  • Свиридов В.В.
  • Свиридов В.В.
RU2118296C1
СПОСОБ ОЧИСТКИ ВОДЫ 2014
  • Ильяшенко Александр Николаевич
RU2568484C1
ДЕМЕРКУРИЗАТОР 2005
  • Окатый Владимир Григорьевич
  • Спирьков Владимир Сергеевич
RU2295583C1

Реферат патента 2023 года СПОСОБ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД, СОДЕРЖАЩИХ СЕРОВОДОРОД И СУЛЬФИД-ИОНЫ

Изобретение относится к технологиям очистки природных и сточных вод и может быть использовано для очистки вод, содержащих сульфид-, гидросульфид-ионы, а также молекулярный сероводород. Способ очистки природных и сточных вод осуществляют путем обработки реагентом с последующим отстаиванием и отделением осадка. Обработку ведут в присутствии катионного флокулянта. В качестве реагента вводят 3-10%-ную водную суспензию смеси алкилкарбоксисилоксанов, которая нейтрализована солями железа (III). Технический результат: эффективная очистка природных и сточных вод, содержащих сульфид-, гидросульфид-ионы, молекулярный сероводород. 3 пр., 3 табл.

Формула изобретения RU 2 789 632 C1

Способ очистки природных и сточных вод путем обработки реагентом с последующим отстаиванием и отделением осадка, обработку ведут в присутствии катионного флокулянта, причем в качестве реагента вводят 3-10%-ную водную суспензию смеси алкилкарбоксисилоксанов общей формулы

отличающийся тем, что водная суспензия смеси алкилкарбоксисилоксанов нейтрализована солями железа (III).

Документы, цитированные в отчете о поиске Патент 2023 года RU2789632C1

СПОСОБ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД, СОДЕРЖАЩИХ ИОНЫ ЖЕЛЕЗА, ТЯЖЕЛЫХ И ЦВЕТНЫХ МЕТАЛЛОВ 1995
  • Свиридов В.В.
  • Свиридов В.В.
RU2118296C1
СПОСОБ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД, СОДЕРЖАЩИХ КАТИОНЫ ЩЕЛОЧНОЗЕМЕЛЬНЫХ И ЩЕЛОЧНЫХ МЕТАЛЛОВ С БОЛЬШИМ ИОННЫМ РАДИУСОМ 2001
  • Свиридов В.В.
  • Свиридов А.В.
  • Никифоров А.Ф.
RU2215695C2
RU 2001119006 A, 27.06.2003
SU 414199 A1, 10.06.1974
Стекло 1974
  • Петросянц Анатолий Арамаисович
  • Аванесов Валерий Арамович
  • Боченов Евгений Евгеньевич
  • Кулямина Людмила Лазаревна
SU503825A1

RU 2 789 632 C1

Авторы

Свиридов Алексей Владиславович

Юрченко Владимир Васильевич

Каменченко Екатерина Александровна

Даты

2023-02-06Публикация

2021-12-17Подача