СПОСОБ ОЧИСТКИ ВОДЫ ОТ СЕРОВОДОРОДА, ИОНОВ СУЛЬФИДОВ И ГИДРОСУЛЬФИДОВ Российский патент 2016 года по МПК C02F9/04 C02F1/58 C01B17/16 C01B17/22 

Описание патента на изобретение RU2588221C1

Изобретение относится к области очистки природных и сточных вод промышленных предприятий от сероводорода, ионов сульфидов и гидросульфидов.

Сточные воды предприятий различных отраслей промышленности (например, химической, нефтедобывающей, нефтеперерабатывающей и др.) могут содержать значительное количество сероводорода, ионов сульфидов и гидросульфидов и других соединений серы, которые являются токсичными соединениями, и очистка таких вод является приоритетным направлением.

В настоящее время известно множество способов очистки воды от сероводорода, ионов сульфидов и гидросульфидов, использующих соли железа в качестве реагента, способного взаимодействовать с сероводородом, ионами сульфидов и гидросульфидов с образованием нерастворимых соединений, которые затем удаляют из очищаемой воды.

Известен способ очистки сточных вод от сульфидов их обработкой сульфатом железа с последующим осаждением сульфида железа (Бараке К. Технические записки по проблемам воды. Т. 2. - М.: Стройиздат, 1983. - С. 853). Недостатком указанного способа является то, что он сопровождается образованием большого количества побочных продуктов, требующих утилизации или переработки.

Известен способ очистки природных и сточных вод от сероводорода, ионов сульфида и гидросульфида (патент RU 2482066, МПК C02F 1/00, опубл. бюл. №14 от 20.05.2013), который может использоваться в целлюлозно-бумажном, химическом и других производствах. Способ очистки воды включает получение водной суспензии частиц гидрооксида железа их химическим осаждением. Суспензию используют для обработки воды путем смешения части гидрооксида железа с образованием нерастворимых сульфидов железа, окисления в суспензии кислородом воздуха и отделения твердых продуктов очистки от очищенной воды. Причем химическое осаждение частиц гидрооксида железа проводят в присутствии в воде диспергированных целлюлозных волокон с получением суспензии композиционного материала из волокон с иммобилизованными ими частицами гидрооксида железа. Окисление сульфидов проходит при повышенном давлении воздуха, а отделение твердых продуктов очистки воды проводится с использованием напорной флотации с получением их в виде флотошлама.

Недостатками способа являются сложность и многостадийность процесса, образование дополнительных отходов, которые также необходимо утилизировать, использование повышенных давлений и дополнительных реагентов, что существенно удорожает процесс очистки. Также к недостаткам данного способа следует отнести низкую удельную производительность, связанную с тем, что нейтрализация сероводорода протекает в гетерофазном режиме, что предполагает протяженность во времени по сравнению, например, с гомофазным режимом.

Известен способ очистки воды от сероводорода (JPS 63200887 А1, МПК C01G 49/12, C02F 1/58, дата опубл. 19.08.1988), заключающийся в том, что исходную загрязненную воду обрабатывают сульфатом железа, которое, вступая в реакцию с сероводородом, образует нерастворимое соединение сульфида железа, затем осажденный сульфид железа отделяют от очищенной воды.

Недостатком указанного способа является то, что он сопровождается образованием побочных продуктов, требующих утилизации или переработки.

Наиболее близким аналогом по технической сущности является способ очистки водных растворов от сероводорода (авт.св. SU 852800, МПК C02F 1/58, опубл. бюл. №29 от 07.08.1981), заключающийся в том, что исходную загрязненную воду обрабатывают хлористым железом (II), которое, вступая в реакцию с сероводородом, образует нерастворимое соединение сульфида железа (FeS), затем разделяют образовавшуюся суспензию на поток очищенной воды и осадок сульфида железа, обрабатывают осадок сульфида железа соляной кислотой с образованием сероводорода и хлористого железа, сероводород направляется на дальнейшую переработку, а хлористое железо направляется на стадию обработки исходной загрязненной воды. Процесс проходит в присутствии метанола.

Недостатками указанного способа являются значительный расход применяемых химических реагентов: соляной кислоты, необходимой для регенерации хлористого железа, и едкого натра, необходимого для нейтрализации водных растворов; образование токсичного сероводорода, который требуется утилизировать (перерабатывать) или выпускать в атмосферу.

Техническими задачами изобретения являются сокращение количества применяемых химических реагентов при очистке воды от сероводорода, ионов сульфидов и гидросульфидов, а также сокращение отходов и сероводородсодержащих газообразных выбросов, подлежащих утилизации или переработке.

Данная техническая задача решается при помощи способа очистки воды от сероводорода, ионов сульфидов и гидросульфидов, включающего обработку исходной воды соединениями железа с последующей их регенерацией кислотой.

Новым является то, что в качестве соединений железа добавляют водные растворы сульфатов железа в объеме и концентрации, достаточных для образования сульфида железа из сероводорода, ионов сульфидов и гидросульфидов, находящихся в исходной воде, регенерацию соединений железа проводят обработкой сульфида железа, отделенного от очищенной воды, серной кислотой или водным ее раствором до образования сульфата железа и газообразного сероводорода, который отводится для получения серной кислоты, используемой для обработки сульфида железа, причем полученный сульфат железа в виде водного раствора направляют для обработки следующей порции очищаемой воды.

На фиг. 1 изображена принципиальная схема осуществления предложенного способа очистки воды.

На фиг. 2 изображена схема осуществления предложенного способа очистки воды, содержащего дополнительную стадию окисления сульфата железа (II).

Способ осуществляется следующим образом.

Исходная загрязненная вода может быть водой попутно добываемой вместе с нефтью, водой с установок обессоливания нефти либо водой иных источников, содержащей требующие удаления сероводород, ионы сульфидов и гидросульфидов.

Исходная вода из источника 1 (фиг. 1) обрабатывается раствором сульфата железа 2 в объеме и концентрации, достаточных для образования сульфида железа из сероводорода, ионов сульфидов и гидросульфидов, находящихся в исходной воде, который, вступая в реакцию с содержащимися в растворе гидросульфидами, сульфидами, сероводородом, образует нерастворимое соединение сульфида железа (наприме, Fe2S3, FeS или другие формы сульфида железа).

Для обработки первой порции исходной очищаемой воды подается свежая порция водного раствора сульфата железа. В качестве сульфата железа предпочтительно используют сульфат железа (III), но также возможно использование сульфата железа (II), а также смеси указанных солей.

При использовании сульфата железа (II) или его смеси с сульфатом железа (III) способ дополнительно может содержать стадию окисления сульфата железа (II) в присутствии серной кислоты с получением регенерированного сульфата железа (III) перед подачей его на стадию обработки исходной загрязненной воды (фиг. 2).

При осуществлении процесса очистки в растворе протекают, в частности, следующие реакции:

Побочным продуктом реакции являются твердые отходы 3. Далее разделяют образовавшуюся суспензию сульфида железа 4 на поток очищенной воды 5 и осадок твердого продукта реакции 6. Разделение осуществляют любым известным методом, позволяющим эффективно отделять жидкую фазу от твердой, например отстаиванием, фильтрацией, ультрафильтрацией, центрифугированием и т.д.

После разделения образовавшейся суспензии сульфида железа 4 отводятся поток очищенной воды 5 и осадок твердого продукта реакции 6, который, в основном, состоит из сульфидов железа. Твердый продукт реакции (осадок сульфидов железа, серы и других нерастворимых компонентов) выводится из технологического цикла и обрабатывается серной кислотой 7 или водным ее раствором. Для обработки первой порции сульфида железа подается свежая порция серной кислоты. В результате протекающей между сульфидами железа 6 и серной кислотой 7 реакции образуются газообразный сероводород 8 и растворимые соли сульфатов железа.

При этом протекают следующие реакции:

Далее образующийся газообразный сероводород 8 подается на установку производства серной кислоты 9. На стадии производства серной кислоты 9 ее можно получить по любому известному методу, использующему сероводород в качестве сырья: например, так называемым мокрым катализом (разработчики И.А. Ададуров, Д. Гернст, 1931 г.), который состоит в том, что смесь оксида серы (IV) и паров воды, полученная сжиганием сероводорода в потоке воздуха, подается в контактный аппарат без разделения, где оксид серы (IV) окисляется при твердом ванадиевом катализаторе до оксида серы (VI). Затем газовая смесь охлаждается в конденсаторе, где пары образующейся серной кислоты превращаются в жидкий продукт. Также существует вероятность использовать в процессе очистки воды привозное сырье (сульфаты железа, серную кислоту) самостоятельно или вместе с полученными в рамках изобретения, например, в случае недостаточного количества регенерируемых компонентов.

Полученной на стадии 9 серной кислотой обрабатывают осадок сульфида железа 6 с образованием сульфатов железа и газообразного сероводорода 8. Сульфаты железа 2 возвращаются на вход системы в качестве добавки к исходной воде.

Экспериментальные исследования показали, что предложенный способ позволяет быстро и эффективно очищать воду от сероводорода, ионов сульфидов и гидросульфидов с применением как сульфата железа (II), так и сульфата железа (III). Степень очистки составляет, как правило, 99%, поскольку произведение растворимости сульфида железа (II) составляет 5·10-18 в нейтральной среде, а произведение растворимости дисульфида железа FeS2 еще меньше 6,3·10-31, остаточное содержание сульфидов в образце очищенной воды составило примерно 2,24·10-9 моль/л или примерно 7,15·10-8 г/л.

Однако при использовании сульфата железа (III) продолжительность по времени стадии приготовления исходного раствора сульфата железа сокращается за счет лучшей растворимости сульфата железа (III) в воде (растворимость сульфата железа (III) в воде при 20°С составляет 81,5%, растворимость сульфата железа (II) - 20,8%, растворимость хлористого железа (II) - 38,5%). Поэтому в случаях, когда при очистке воды требуется сократить время приготовления раствора соли железа, например, при необходимости использования больших количеств соли (в случае высокого содержания загрязняющих веществ), использование сульфата железа (III) является предпочтительней, чем, например, сульфата железа (II).

Поэтому в случае использования при очистке воды сульфата железа (II) стадию возврата сульфатов железа 2 на вход системы в качестве добавки к исходной воде предпочтительно проводить при контакте с воздухом в присутствии серной кислоты (например, полученной на стадии 9) для окисления сульфата железа (II) на стадии 10 (фиг. 2) до сульфата железа (III) по следующим реакциям:

Преимуществом использования сульфата железа (II) при очистке воды является образование меньшего количества побочных продуктов реакции, например, таких как коллоидная сера.

Отличительными особенностями предлагаемого способа очистки воды от сероводорода, сульфидов и гидросульфидов являются:

- высокий эффект очистки, поскольку основной процесс - удаление сероводорода, ионов сульфидов и гидросульфидов из воды - проводится в гомофазном режиме, а в основе остальных процессов способа лежат химические реакции, протекающие в эквимолярных соотношениях;

- возврат химических реагентов обратно в следующий цикл очистки, что позволяет сократить до минимума количество привозных реагентов;

- снижение до минимума образование твердых серосодержащих отходов, подлежащих утилизации (переработке);

- отсутствие газообразных сероводородсодержащих выбросов;

- возможность работы с нефтесодержащими водами;

- дополнительный эффект очистки воды от нефтепродуктов в случае их наличия в очищаемой воде.

Пример конкретного исполнения. На стендовой установке производительностью до 400 л/ч на реальном нефтепромысловом объекте очищают попутно добываемую воду (ПДВ) Ашальчинского месторождения сверхвязкой нефти (СВН). Свойства исходной очищаемой воды следующие: концентрация сероводорода - 421 мг/дм3, общее солесодержание - 3650 мг/дм3, щелочность - 41,3 ммоль/дм3, концентрация нефтепродуктов - 36,5 мг/дм3. В предварительно очищенную от нефтепродуктов до вышеуказанного значения концентрации ПДВ подают раствор сульфата железа с дозировкой 2,1 г/м3 (по основному веществу). После чего воду направляют в гидроциклон для перемешивания и нарушения агрегативной устойчивости образовавшегося сульфида железа, затем - в сгуститель полочного типа для отстаивания сульфида железа. После вышеуказанных технологических операций в воде на выходе с установки концентрация сероводорода составила 0,2 мг/дм3, также за счет сорбции нефтепродуктов на поверхности сульфида железа концентрация нефтепродуктов в воде снизилась до 14,2 мг/дм3. Образовавшийся сульфид железа обрабатывали серной кислотой, в результате чего протекала реакция с образованием газообразного сероводорода и сульфата железа, раствор которого вместе с плавающей на поверхности пленкой нефтепродуктов оставался в кубовом остатке реактора. Раствор сульфата железа после предварительной очистки использовался для подачи в исходную ПДВ. Доля сульфата железа, полученного в результате реакции сульфида железа с серной кислотой и затем возвращенного в установку для обработки следующей порции воды, составила 95,7 мас. % от первоначально использованного сульфата железа, что значительно сокращает количество привозных реагентов в отличие от наиболее близкого к изобретению способа, где требуется постоянный расход соляной кислоты для регенерации всего объема используемого хлористого железа. Количество свежей порции сульфата железа для обработки новой порции воды составило 4,3% от первоначально использованного эквимолярного количества.

Таким образом, использование изобретения позволяет очистить воду от сероводорода, сульфидов и гидросульфидов до следовых количеств. В предлагаемом способе за счет цикличности процесса реализуется возврат в цикл очистки до 95,7 мас. % применяемого сульфата железа, что значительно сокращает количество привозных реагентов. Также за счет цикличности процесса в предлагаемом способе отсутствуют газообразные выбросы сероводорода, подлежащие утилизации или переработке.

Похожие патенты RU2588221C1

название год авторы номер документа
СПОСОБ ОЧИСТКИ ВОДЫ 2014
  • Ильяшенко Александр Николаевич
RU2568484C1
СПОСОБ ПОЛУЧЕНИЯ ГИДРОСУЛЬФИДА КАЛЬЦИЯ 2020
  • Булатов Константин Валерьевич
  • Закирничный Виталий Николаевич
  • Верхорубова Алла Владимировна
  • Передерий Олег Григорьевич
  • Клюшников Антон Михайлович
RU2742990C1
СПОСОБ ОЧИСТКИ СУЛЬФИДНО-ЩЕЛОЧНЫХ СТОКОВ 2011
  • Мнушкин Игорь Анатольевич
  • Комиссаров Андрей Васильевич
RU2460692C1
Способ получения железного купороса из осадка от очистки хромсодержащих сточных вод 2023
  • Гильварг Сергей Игоревич
  • Жильцов Юрий Алексеевич
  • Климанский Андрей Николаевич
  • Пиввуев Владимир Яковлевич
  • Буков Владимир Алексеевич
  • Зырянов Евгений Владимирович
RU2813920C1
СПОСОБ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД ОТ СЕРОВОДОРОДА, ИОНОВ СУЛЬФИДА И ГИДРОСУЛЬФИДА 2012
  • Мазитов Леонид Асхатович
  • Финатов Алексей Николаевич
  • Финатова Ирина Леонидовна
  • Борисов Виктор Ефимович
  • Борисов Максим Викторович
  • Борисова Елена Александровна
RU2482066C1
Способ очистки воды от сернистых соединений 2015
  • Сахабутдинов Рифхат Зиннурович
  • Абрамов Михаил Алексеевич
  • Буслаев Евгений Сергеевич
  • Гарифуллин Рафаэль Махасимович
  • Губайдулин Фаат Равильевич
  • Кудряшова Любовь Викторовна
RU2626367C2
Способ очистки газа от сероводорода 2023
  • Жирнов Борис Семенович
  • Опарина Фатима Рауфовна
  • Сусликов Антон Владимирович
  • Балыкова Дарья Владимировна
RU2824351C1
СПОСОБ ОБЕЗВРЕЖИВАНИЯ СУЛЬФИДНО-ЩЕЛОЧНЫХ ЖИДКИХ СТОКОВ 2007
  • Резяпов Радж Нуруллович
  • Колесов Сергей Викторович
  • Гимазетдинов Альберт Фавилович
  • Прочухан Юрий Анатольевич
  • Резяпова Ирина Борисовна
RU2326824C1
Способ получения сульфида натрия абсорбцией сероводородсодержащего газа раствором гидроксида натрия 2023
  • Мазгаров Ахмет Мазгарович
  • Вильданов Азат Фаридович
  • Окружнов Михаил Александрович
  • Хрущева Ирина Константиновна
  • Бажирова Наиля Гильмутдиновна
  • Аюпова Нэля Ринатовна
  • Коробков Федор Александрович
  • Акзигитов Евгений Александрович
  • Ткач Рустем Сергеевич
  • Газизуллин Райнур Рафаэлевич
  • Галиев Ильдар Фирдависович
  • Шамсуллин Алмаз Инсафович
RU2813888C1
СПОСОБ ОЧИСТКИ УГЛЕВОДОРОДНЫХ ФРАКЦИЙ ОТ СЕРНИСТЫХ СОЕДИНЕНИЙ 2017
  • Андреев Борис Владимирович
  • Устинов Андрей Станиславович
RU2662154C1

Иллюстрации к изобретению RU 2 588 221 C1

Реферат патента 2016 года СПОСОБ ОЧИСТКИ ВОДЫ ОТ СЕРОВОДОРОДА, ИОНОВ СУЛЬФИДОВ И ГИДРОСУЛЬФИДОВ

Изобретение может быть использовано для очистки природных и сточных вод промышленных предприятий от сероводорода, ионов сульфидов и гидросульфидов. Способ включает обработку исходной воды соединениями железа с последующей их регенерацией кислотой. В качестве соединений железа добавляют водные растворы сульфатов железа в объеме и концентрации, достаточных для образования сульфида железа из сероводорода, ионов сульфидов и гидросульфидов, находящихся в исходной воде. Регенерацию соединений железа проводят обработкой сульфида железа, отделенного от очищенной воды, серной кислотой или водным ее раствором до образования сульфата железа и газообразного сероводорода, который отводят для получения серной кислоты, используемой при обработке сульфида железа. Полученный сульфат железа в виде водного раствора направляют для обработки следующей порции очищаемой воды. Изобретение обеспечивает очистку воды до следовых количеств загрязняющих веществ, при этом за счет цикличности процесса реализуют возврат в цикл очистки до 95,7% применяемого сульфата железа, а также отсутствуют газообразные выбросы сероводорода, подлежащие утилизации и переработке. 2 ил., 1 пр.

Формула изобретения RU 2 588 221 C1

Способ очистки воды от сероводорода, ионов сульфидов и гидросульфидов, включающий обработку исходной воды соединениями железа с последующей их регенерацией кислотой, отличающийся тем, что в качестве соединений железа добавляют водные растворы сульфатов железа в объеме и концентрации, достаточных для образования сульфида железа из сероводорода, ионов сульфидов и гидросульфидов, находящихся в исходной воде, регенерацию соединений железа проводят обработкой сульфида железа, отделенного от очищенной воды, серной кислотой или водным ее раствором до образования сульфата железа и газообразного сероводорода, который отводится для получения серной кислоты, используемой для обработки сульфида железа, причем полученный сульфат железа в виде водного раствора направляют для обработки следующей порции очищаемой воды.

Документы, цитированные в отчете о поиске Патент 2016 года RU2588221C1

Способ очистки водных растворовОТ СЕРОВОдОРОдА 1979
  • Галанин Игорь Александрович
  • Зиновьева Лариса Михайловна
  • Игнатенко Юрий Карпович
  • Вяхирев Рем Иванович
  • Гаврилийченко Валентина Семеновна
  • Щугорев Виктор Дмитриевич
  • Гриценко Александр Иванович
  • Мурин Владимир Иосифович
SU852800A1
МИЛОВАНОВ Л.В
Очистка сточных вод предприятий цветной металлургии
- М.: Металлургия, 1971, с
Аппарат для передачи изображений на расстояние 1920
  • Адамиан И.А.
SU171A1
Приспособление для автоматической тарификации посылок, взвешиваемых на весах 1928
  • Бомбик Н.Е.
SU11834A1
СПОСОБ ОЧИСТКИ ГАЗОВЫХ ПОТОКОВ ОТ СЕРОВОДОРОДА 2009
  • Тарханова Ирина Геннадиевна
  • Смирнов Владимир Валентинович
  • Тюрин Алексей Александрович
RU2398735C1
Навесное устройство крутосклонного трактора 1986
  • Гогишвили Мераб Григорьевич
  • Дарахвелидзе Иосиф Нодарович
  • Дундуа Годердзи Амиранович
  • Чантуридзе Виссарион Давидович
  • Лукава Фридон Михайлович
SU1371543A1
СПОСОБ ОЧИСТКИ ПРИРОДНЫХ И СТОЧНЫХ ВОД ОТ СЕРОВОДОРОДА, ИОНОВ СУЛЬФИДА И ГИДРОСУЛЬФИДА 2012
  • Мазитов Леонид Асхатович
  • Финатов Алексей Николаевич
  • Финатова Ирина Леонидовна
  • Борисов Виктор Ефимович
  • Борисов Максим Викторович
  • Борисова Елена Александровна
RU2482066C1
US 5391278 A, 21.02.1995
Узел крепления контактного элемента 1976
  • Казайнис Гунтис Янович
  • Звиргзд Арнольд Янович
SU656140A1
НИКОЛАДЗЕ Г.И
и др
Подготовка воды для питьевого и промышленного

RU 2 588 221 C1

Авторы

Сахабутдинов Рифхат Зиннурович

Абрамов Михаил Алексеевич

Каграманов Георгий Гайкович

Лойко Андрей Владимирович

Ицков Станислав Викторович

Буслаев Евгений Сергеевич

Гарифуллин Рафаэль Махасимович

Губайдулин Фаат Равильевич

Кудряшова Любовь Викторовна

Даты

2016-06-27Публикация

2015-01-21Подача