Изобретение относится к области измерительной техники, а именно к высокотемпературным тензорезисторам, используемым в качестве чувствительных элементов в конструкции датчиков, применяемых для измерения величин знакопеременных механических напряжений и деформаций в деталях машин и механизмов, работающих в условиях воздействия нормальных, повышенных и высоких температур.
Наиболее близким по технической сущности к предлагаемому изобретению является выбранный в качестве прототипа высокотемпературный полупроводниковый тензорезистор, содержащий тензочувствительную и диэлектрическую пленки, сформированные непосредственно на деформируемой металлической поверхности испытуемого объекта (Патент РФ №2634491, опубл. 31.10.2017 г.).
Известная конструкция тензорезистора, представляющая собой тензочувствительную пленку из поликристаллического моносульфида самария нанесенную непосредственно на поверхность испытываемого объекта, формируемую ионнолучевым распылением. При нанесении этой пленки на электропроводную поверхность для электроизоляции контактов и тензочувствительного элемента используются дополнительные слои диэлектрика.
Недостатками данного устройства является необходимость применения технологических операций по установке слоев диэлектрика, ограниченность возможных габаритов и конфигураций деталей, дороговизна и ресурсоемкость из-за сложности применения технологий и методов ионно-лучевого напыления тезочувствительных пленок. Наличие в конструкции диэлектрических слоев искажает картину деформаций поверхности объекта испытаний, что обуславливает значительную погрешность измерения.
В основу заявленного изобретения был положен технический результат - создание конструкции тензорезистора, исключающей необходимость размещения промежуточных элементов, искажающих картину деформаций, между тензочувствительным элементом и поверхностью объекта испытаний, а также обеспечивающей формирование тензочувствительных элементов на сложных поверхностях и поднутрениях за счет синтеза на поверхности объекта испытаний, методом плазменно-электролитической обработки, тензорезистивного слоя металлооксидной керамики, не образующего физической поверхности и границы раздела между поверхностью испытуемого образца и сформированными тензочувствительной и диэлектрической пленками, синтезированными в едином поликристаллическом слое металлооксидной керамики включающей интерметаллиды.
Технический результат достигается тем, что в высокотемпературном тензорезисторе, содержащем тензочувствительную и диэлектрическую пленки, сформированные непосредственно на деформируемой металлической поверхности испытуемого объекта, тензочувствительная и диэлектрическая пленки синтезированы в едином поликристаллическом слое металлооксидной керамики включающей интерметаллиды, выполненном без образования физической поверхности и границы раздела на основе из вентильных металлов и их сплавов, образующих деформируемую металлическую поверхность испытуемого объекта.
Тензочувствительную пленку из оксидной керамики (шпинели из оксида алюминия, оксида кремния, оксидов итрия, оксидов циркония и других редкоземельных металлов) с включением их интерметаллидов, формируют непосредственно на испытуемом объекте из вентильных металлов и их сплавов (оксиды которых, полученные электрохимическим путем, обладают униполярной проводимостью в системе металл-оксид-электролит, например сплавы Al, Mg, Ti, Zr, Nb, Та и др.) методом плазменно-электролитического оксидирования в комплексных электролитах содержащих растворы солей, коллойдов и суспензий целевых металлов, обеспечивающих тензорезистивные функции слоя в профиле поверхности крепления электродов и диэлектрические в зоне перехода металла основания в оксид.
На чертеже изображена схема высокотемпературного тензорезистора.
Высокотемпературный тензорезистор, содержит тензочувствительную и диэлектрическую пленки 1 и 2, сформированные непосредственно на деформируемой металлической поверхности 3 испытуемого объекта 4, и на противоположных краях верхней плоскости которой имеются две электрические контактные площадки 6, тензочувствительная и диэлектрическая пленки 1 и 2 синтезированы в едином поликристаллическом слое 5 металлооксидной керамики, включающей интерметаллиды, выполненном без образования физической поверхности и границы раздела на основе из вентильных металлов и их сплавов, образующих деформируемую металлическую поверхность 3 испытуемого объекта 4.
Поверхность испытуемого объекта 4 модифицируется в электролитной плазме методом плазменно-электролитической обработки до образования металлооксидного керамического слоя 5, пленки 1 и 2 которого выполняют тензочувствительную и диэлектрическую функции. На поверхности тензочувствительной пленке 1 установлены две электрические контактные площадки 6 для присоединения к ним проводов 7.
Высокотемпературный тензорезистор работает следующим образом.
При деформации объекта испытаний 4 в диапазоне температур от 20 до 950 С (зависит от материала испытуемого объекта 4) на его поверхности возникают сжимающие или растягивающие напряжения, приводящие к изменению длины участка поверхности, на котором сформирован тензорезистор, следовательно, к изменению длины тензочувствительного элемента слоя 5 - тензочувствительной пленки 1. При этом меняется расстояние между атомами материала тензочувствительного элемента слоя 5 - тензочувствительной пленки 1, следовательно, меняются силы взаимодействия между атомами. Это вызывает изменение проводимости (1/R) от энергий ионного и электронного обменного взаимодействия донорно-акцепторных пар в металлооксидной керамике, которая включает в свой состав оксидные соединения полупроводников (из ряда SnO2, WO3, ZnO, TiO2, вариантов их шпинелей и другие) и примесных интерметаллидов на основе элементов переходного ряда Zn, Cu, Ni, Со, Fe, Mn, Cr, V, Ti и т.д. При подключении к контактным площадкам 6 и создании разности потенциалов образуется электрическая система типа металл (электрод) - оксидный полупроводник (синтезированный металлооксидный и интерметаллидный твердый электролит) - металл (электрод), в которой изменяется электрохимический импеданс и его характеристический спектр, зависящий от рекомбинационных процессов в структуре металлооксидной керамики при деформациях. В металлооксидном полупроводнике деформация приводит к изменению расстояния между атомом примеси и окружающими его атомами кристаллической решетки.
Такие тензорезисторы, могут быть собраны в мост Уинстона или другие типы измерительных систем, в т.ч. с помехоустойчивостью и термокомпенсацией при прямых измерениях, будучи сформированными непосредственно на объекте измерения, или сформированными на элементах, устанавливаемых на (в) объекты измерения (если диэлектрики или не вентильные металлы). Т.е. как самостоятельные элементы - тензорезисторы, так и элементы, являющиеся частью сборки на поверхности детектируемого объекта (элемента конструкции или тарированного деформируемого тела - тензометра измерительной системы), работающего при высоких температурах.
Таким образом, заявленная совокупность существенных признаков, отраженная в формуле изобретения, обеспечивает получение заявленного технического результата - уменьшение искажений напряжений, действующих на поверхности объекта испытаний, повышение технологичности, надежности и долговечности конструкции, повышение рабочей температуры, уменьшение размеров тензорезистора, обеспечение возможности измерения напряжений деталей сложного профиля и в полостях, снижение массы элементов, измерение максимального уровня напряжений в месте расположения тензочувствительной пленки независимо от направления растяжения-сжатия поверхности относительно расположения тензорезистора.
Анализ заявленного технического решения на соответствие условиям патентоспособности показал, что указанные в формуле признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности необходимых признаков, неизвестной на дату приоритета из уровня техники и достаточной для получения требуемого синергетического (сверхсуммарного) технического результата.
Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:
объект, воплощающий заявленное техническое решение, при его осуществлении предназначен для осуществления процесса измерения величин знакопеременных механических напряжений и деформаций в деталях машин и механизмов, работающих в условиях воздействия нормальных, повышенных и высоких температур при телеметрии и вибродиагностике, в области упругих деформаций чувствительных (характеристических) поверхностей.
- для заявленного объекта в том виде, как он охарактеризован в формуле, подтверждена возможность его осуществления с помощью вышеописанных в заявке или известных из уровня техники на дату приоритета средств и методов;
- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.
Следовательно, заявленный объект соответствует критериям патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.
название | год | авторы | номер документа |
---|---|---|---|
Высокотемпературный полупроводниковый тензорезистор | 2016 |
|
RU2634491C1 |
Полупроводниковый резистор | 2016 |
|
RU2655698C1 |
ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ДЕФОРМАЦИИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 1998 |
|
RU2200300C2 |
ТЕНЗОРЕЗИСТОР НА ОСНОВЕ СУЛЬФИДА САМАРИЯ | 2014 |
|
RU2564698C2 |
ТЕНЗОПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ | 2005 |
|
RU2293955C1 |
НАКЛЕИВАЕМЫЙ ПОЛУПРОВОДНИКОВЫЙ ТЕНЗОРЕЗИСТОР | 2012 |
|
RU2511209C1 |
НАКЛЕИВАЕМЫЙ ПОЛУПРОВОДНИКОВЫЙ ТЕНЗОРЕЗИСТОР (ВАРИАНТЫ) | 2012 |
|
RU2505782C1 |
Датчик деформации | 2016 |
|
RU2658089C1 |
НАКЛЕИВАЕМЫЙ ПОЛУПРОВОДНИКОВЫЙ ТЕНЗОРЕЗИСТОР | 2011 |
|
RU2463687C1 |
ВЫСОКОТОЧНЫЙ ТЕНЗОДАТЧИК | 2008 |
|
RU2367061C1 |
Изобретение относится к области измерительной техники, а именно к высокотемпературным тензорезисторам, используемым в качестве чувствительных элементов в конструкции датчиков, применяемых для измерения величин знакопеременных механических напряжений и деформаций. Технический результат - создание конструкции тензорезистора, исключающей необходимость размещения промежуточных элементов, искажающих картину деформаций, между тензочувствительным элементом и поверхностью объекта испытаний, и обеспечивающей формирование тензочувствительных элементов на сложных поверхностях и поднутрениях за счет синтеза на поверхности объекта испытаний, методом плазменно-электролитической обработки. Высокотемпературный тензорезистор содержит тензочувствительную и диэлектрическую пленки, синтезированные в едином поликристаллическом слое металлооксидной керамики, включающей интерметаллиды, выполненном без образования физической поверхности и границы раздела на основе из вентильных металлов и их сплавов, образующих деформируемую металлическую поверхность испытуемого объекта. 1 ил.
Высокотемпературный тензорезистор, содержащий тензочувствительную и диэлектрическую пленки, сформированные непосредственно на деформируемой металлической поверхности испытуемого объекта, отличающийся тем, что тензочувствительная и диэлектрическая пленки синтезированы в едином поликристаллическом слое металлооксидной керамики, включающей интерметаллиды, выполненном без образования физической поверхности и границы раздела на основе из вентильных металлов и их сплавов, образующих деформируемую металлическую поверхность испытуемого объекта.
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕНЗОРЕЗИСТОРОВ ДЛЯ ИЗМЕРЕНИЯ ДЕФОРМАЦИЙ ПОВЕРХНОСТИ | 2008 |
|
RU2389973C2 |
Высокотемпературный полупроводниковый тензорезистор | 2016 |
|
RU2634491C1 |
Способ изготовления тензометрических датчиков сопротивления | 1958 |
|
SU119369A1 |
JP 9033367 A, 07.02.1997 | |||
DE 502004010904 D1, 29.04.2010 | |||
Гусев, Ю | |||
А., Белогуб, А | |||
В., & Кахраи, К | |||
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз | 1924 |
|
SU2014A1 |
Анализ передачи деформации в высокотемпературном пленочном тензорезисторе | |||
Вісник двигунобудування, (2), 48-53 | |||
Любимский В.М | |||
Проблемы проектирования |
Авторы
Даты
2023-04-19—Публикация
2021-11-25—Подача