Способ оценки напряженно-деформированного состояния железнодорожного пути в условиях Крайнего Севера и Сибири Российский патент 2023 года по МПК B61K9/08 E01B35/00 

Описание патента на изобретение RU2795351C1

Изобретение относится к железнодорожному транспорту и предназначено для контроля и оценки фактического состояния элементов железнодорожного пути и прилегающей инфраструктуры в условиях Крайнего Севера и Сибири.

Известен метод измерений напряжений, усилий и деформаций, возникающих в верхнем строении пути под подвижным составом с помощью приборов, установленных непосредственно в пути (ГОСТ Р55050 - 2012).

Недостатками этого метода является то, что он позволяет проводить измерения лишь на ограниченных по протяженности участках пути и применяется в основном для определения допустимого воздействия железнодорожного подвижного состава на железнодорожный путь, для установления условий обращения по сети дорог, а также при сертификационных испытаниях.

Известен способ контроля и оценки фактического состояния элементов железнодорожного пути по условию их прочности по силам взаимодействия подвижного состава и железнодорожного пути. В составе грузового поезда размещают диагностический грузовой вагон, оборудованный тензометрическими колесными парами, с помощью которых измеряют вертикальные и боковые силы, передающиеся от колес диагностического грузового вагона на рельсы. Дополнительно перед поездкой в бортовую систему управления грузовым поездом вводят параметры пути, зависящие от конструкции верхнего строения оцениваемого пути. Вертикальные и боковые силы измеряют для загруженного диагностического грузового вагона в диапазоне частот, определяемом с учетом спектра силовых составляющих, возникающих в месте контакта колеса с рельсом при прохождении диагностического грузового поезда по длинным неровностям пути, коротким неровностям пути и неровностям на поверхности катания рельса. Размещают в составе грузового поезда нагрузочное устройство, с помощью которого в реальном времени определяют модуль упругости пути. По измеренным в движении величинам вертикальных и боковых сил, модуля упругости и введенным перед поездкой параметрам пути определяют характеристики напряженно-деформированного состояния пути под диагностическим грузовым вагоном на эксплуатируемых участках любой протяженности с привязкой к конкретным сечениям пути с помощью устройства GPS навигации. (Патент RU №2659365 С1, МПК В61К9/08, Е01В 35/12, опубл.20.06.2018).

Недостатком указанного способа является небольшой диапазон частот измеренных спектров силовых составляющих, возникающих в месте контакта колеса с рельсом при прохождении диагностического грузового поезда по длинным неровностям пути, коротким неровностям пути и неровностям на поверхности катания рельса, что негативно скажется на точности определения характеристик напряженно-деформированного состояния железнодорожного пути в условиях Крайнего Севера и Сибири.

Известно исследование поведения грунтов основания насыпей в условиях Крайнего Севера и Сибири, принятое за прототип, при низкочастотных нагрузках в трех взаимно перпендикулярных направлениях, создаваемых подвижным составом. Полученные сейсмические записи позволили выявить информативные параметры для трех частотных диапазонов сигнала: высокой частоты ВЧ - 2-8Гц, средней частоты СЧ - 0,1-2Гц и низкой частоты НЧ - ниже 0,1Гц, по которым можно судить об изменениях на ранней стадии несущей способности верхней (насыпь) и нижней (естественное основание) части разреза земляного полотна. Созданные аналитические модели позволяют объяснить процессы, происходящие в верхнем и нижнем строениях земляного полотна, предсказать поведение грунтов при климатических изменениях, дать количественные оценки параметров упругости и вязкости в условиях естественного залегания грунтов. (Орлова И.П. Разработка технологии сейсмического мониторинга состояния транспортных сооружений в условиях Крайнего Севера и Сибири. Диссертация к.т.н., 2022, 124с.).

Основным недостатком проведенных исследований является небольшой диапазон частот определяемых параметров напряженно-деформированного состояния элементов пути, недостаточный для получения достоверной информации о параметрах напряженно-деформированного состояния элементов пути в зимних условиях при замерзании всех участков пути.

Техническим результатом, на достижение которого направлено предполагаемое изобретение, является повышение точности и достоверности определения характеристик напряженно-деформированного состояния железнодорожного пути в условиях Крайнего Севера и Сибири.

Указанный технический результат достигается тем, что в способе оценки напряженно-деформированного состояния железнодорожного пути в условиях Крайнего Севера и Сибири, заключающемся в том, что в соответствии со строением пути создают трехмерные конечно-элементные модели исследуемого участка железнодорожного пути с прилегающей к нему инфраструктурой, проводят гармонические нагружения трехмерных конечно-элементных моделей, жесткость элементов которых соответствует жесткости замерзшего и оттаявшего исследуемого участка железнодорожного пути с прилегающей к нему инфраструктурой, результаты гармонических откликов нагружаемых трехмерных конечно-элементных моделей применяют при определении диапазона частот измеряемых параметров напряженно-деформированного состояния элементов пути.

Изобретение поясняется чертежами:

На фигуре 1 показана конечно-элементная (КЭ) модель исследуемого участка железнодорожного полотна с прилегающей инфраструктурой и установленной на железнодорожном полотне моделью вагона;

- на фигуре 2 показано место на рельсе (узел КЭ сетки) для определения продольных напряжений δy и боковых перемещений Ux в головке рельса;

- на фигурах 3 (а, б) изображены графики изменений продольных напряжений δy в головке рельса по частоте f весовой нагрузки при оттаивании (3а) и замораживании (3б) насыпи;

- на фигурах 4 (а, б) изображены графики изменений боковых перемещений Ux в головке рельса по частоте f весовой нагрузки при оттаивании (4а) и замораживании (4б) насыпи;

- на фигуре 5 показано место на насыпи для определения боковых перемещений Ux насыпи;

- на фигурах 6 (а, б) изображены графики изменений боковых перемещений Ux насыпи по частоте f весовой нагрузки при оттаивании (6а) и замораживании (6б) насыпи;

- на фигуре 7 показано место (верхний узел КЭ сетки) определения боковых перемещений Ux объекта инфраструктуры;

- на фигурах 8 (а, б) изображены графики изменений боковых перемещений Ux объекта инфраструктуры по частоте f весовой нагрузки при оттаивании (8а) и замораживания (8б) насыпи.

На фиг. 1, 2, 5, 7 изображены КЭ модели, включающие в себя диагностический грузовой вагон 1 с тензометрическими колесными парами 2, установленными на железнодорожное полотно 3, уложенное по насыпи 4, и объект 5, имитирующий окружающую инфраструктуру. Указанные элементы расположены на основании 6.

На КЭ модели (фиг.2) на рельсе указано место 7 определения продольных напряжений δy и боковых перемещений Ux головки рельса, а на фиг. 3а, 3б и 4а, 4б изображены соответствующие указанной КЭ модели графики изменений продольных напряжений δy и боковых перемещений Ux в головке рельса по частоте f весовой нагрузки при оттаивании (3а, 4а) и замораживании (3б, 4б) насыпи.

На КЭ модели (фиг.5) указано место 8 на насыпи 4 для определения боковых перемещений Ux насыпи и соответствующие указанной КЭ модели графики (фиг.6а и 6б) изменений боковых перемещений Ux насыпи 4 по частоте f весовой нагрузки при оттаивании (6а) и замораживании (6б) насыпи.

На КЭ модели (фиг.7) указано место 9 для определения боковых перемещений Ux объекта инфраструктуры 5 и соответствующие указанной КЭ модели графики (фиг.8а, б) изменений боковых перемещений Ux по частоте f весовой нагрузки при оттаивании (8а) и замораживании (8б) насыпи 4.

Изобретение осуществляется следующим образом.

Оценку напряженно-деформированного состояния (НДС) железнодорожного пути можно осуществлять, например, посредством грузового поезда, в котором размещают диагностический грузовой вагон, оборудованный тензометрическими колесными парами для измерения вертикальных и боковых сил, передающихся от колес диагностического грузового вагона на рельсы. В соответствии со строением пути создают трехмерные конечно-элементные модели исследуемого участка железнодорожного пути с прилегающей к нему инфраструктурой, причем элементы 3, 4, 5 исследуемого участка железнодорожного пути расположены на замороженном основании 6, модуль упругости которого принят 3⋅1010 Па. Проводят гармонические нагружения трехмерных конечно-элементных моделей с жесткостями их элементов, соответствующими замерзанию и оттаиванию исследуемого участка железнодорожного пути с прилегающей инфраструктурой. Вертикальные и боковые силы измеряют для загруженного диагностического грузового вагона массой 100 т в диапазоне частот, который определяют с учетом результатов гармонических откликов конечно-элементных моделей. Строят графики изменений продольных напряжений и боковых перемещений исследуемых элементов 3, 4, 5 железнодорожного пути.

Качественное сравнение полученных графиков (см. фиг. 3а и 3б, 4а и 4б, 6а и 6б) однозначно показывает необходимость измерения параметров НДС элементов пути при замерзании насыпи (модуль упругости 3⋅1010 Па) на значительно более высоких частотах, чем при оттаивании насыпи (модуль упругости 3.5⋅107 Па). Так, например, продольные напряжения в головке рельса в случае замерзания насыпи (фиг. 3б) на частотах более 120 Гц увеличиваются более чем на два порядка. Количественно на частоте, например, 220 Гц продольные напряжения при замерзании насыпи выше, чем при ее оттаивании (см. фиг. 3а). Аналогичные выводы можно сделать из сравнения фигур 4а и 4б для боковых перемещений головки рельса и фигур 6а и 6б для боковых перемещений насыпи. Для боковых перемещений верхнего узла КЭ модели объекта инфраструктуры 5 (фиг. 1) с неизменной жесткостью (модуль упругости 3⋅1010 Па) в обоих рассмотренных случаях значительных отличий не выявлено, хотя также подтверждается необходимость измерения параметров НДС ее элементов на частотах более 50 Гц как при оттаивании, так и при замерзании насыпи (см. фиг. 8а и 8б). Анализ графиков позволяет возможным сделать вывод о том, что исследование напряженно-деформированного состояния элементов пути необходимо проводить в диапазоне частот 0-350 Гц и выше.

Предложенный способ позволит существенно повысить точность измерения основных характеристик напряженно-деформированного состояния пути, определяющих, например, прочность пути под груженым диагностическим вагоном с максимальной допустимой нагрузкой на ось и привязкой к конкретным участкам. Такими характеристиками могут быть, например, боковые перемещения головки рельса, сдвиг подошвы рельса, напряжения соответственно во внешней и внутренней выкружке головки рельса, напряжения соответственно во внешней и внутренней кромке подошвы рельса, вертикальные прогибы рельса, ускорение рельса, вертикальные прогибы шпал, ускорения шпал, напряжения в балласте, напряжения смятия шпал подкладками, напряжения на основной площадке земляного полотна на выбранных участках пути любой протяженности.

Максимальные значения напряжений и деформаций пути, полученные по результатам измерений сил, действующих от колеса на рельсы сравнивают с максимальными допустимыми значениями, установленными нормативными документами, и используют для определения допускаемых скоростей движения грузовых вагонов с максимальной допустимой осевой нагрузкой 23,5 т при движении по исследуемым участкам пути, определения максимального веса поезда и рациональных режимов его ведения, оценки накопления остаточных деформаций верхнего строения пути с целью определения видов и сроков проведения ремонта пути.

Похожие патенты RU2795351C1

название год авторы номер документа
Устройство оценки и контроля динамического состояния верхнего строения пути в условиях интенсификации перевозочных процессов 2020
  • Елисеев Сергей Викторович
  • Каргопольцев Сергей Константинович
  • Большаков Роман Сергеевич
  • Елисеев Андрей Владимирович
  • Выонг Куанг Чык
RU2757941C1
СПОСОБ ИССЛЕДОВАНИЯ ПАРАМЕТРОВ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ УПРУГИХ ОБЪЕКТОВ 2018
  • Волохов Григорий Михайлович
  • Гасюк Александр Сергеевич
  • Овечников Михаил Николаевич
  • Чунин Сергей Владимирович
  • Шабуневич Андрей Викторович
  • Шабуневич Виктор Иванович
RU2686870C1
Способ оценки напряженно-деформированного состояния пути 2017
  • Коган Александр Яковлевич
  • Суслов Олег Александрович
  • Кажаев Александр Николаевич
RU2659365C1
Способ определения оптимальных размеров и количества уравнительных рельсов и ремонтных звеньев бесстыкового железнодорожного пути 2024
  • Коссов Валерий Семёнович
  • Шабуневич Виктор Иванович
  • Трепачева Татьяна Владиславовна
RU2824683C1
СПОСОБ ОЦЕНКИ СОСТОЯНИЯ ЖЕЛЕЗНОДОРОЖНОГО ПУТИ С ИЗОЛИРУЮЩИМ СТЫКОМ 2014
  • Моргулец Сергей Владимирович
  • Ушаков Андрей Евгеньевич
  • Кленин Юрий Георгиевич
RU2567495C1
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ РАЗЛИЧНЫХ УПРУГИХ ОБЪЕКТОВ 2017
  • Бидуля Александр Леонидович
  • Волохов Григорий Михайлович
  • Овечников Михаил Николаевич
  • Панин Юрий Алектинович
  • Пономарев Андрей Сергеевич
  • Чунин Сергей Владимирович
  • Шабуневич Виктор Иванович
RU2670723C9
СПОСОБ ПРОВЕДЕНИЯ РЕМОНТОВ И РЕКОНСТРУКЦИИ ЖЕЛЕЗНОДОРОЖНОЙ ИНФРАСТРУКТУРЫ С ИСПОЛЬЗОВАНИЕМ ЦИФРОВОЙ МОДЕЛИ ПУТИ 2011
  • Гельфгат Александр Григорьевич
  • Суворов Александр Викторович
  • Воронков Андрей Александрович
  • Попов Олег Юрьевич
  • Базлов Юрий Алексеевич
  • Анисимов Антон Александрович
RU2465385C1
Способ оценки динамической жёсткости рельсового пути и устройство для его реализации 2019
  • Елисеев Сергей Викторович
  • Каргапольцев Сергей Константинович
  • Орленко Алексей Иванович
  • Быкова Наталья Михайловна
  • Большаков Роман Сергеевич
  • Елисеев Андрей Владимирович
RU2731163C1
Многофункциональный автономный роботизированный комплекс диагностики и контроля верхнего строения пути и элементов железнодорожной инфраструктуры 2020
  • Логинов Алексей Геннадьевич
RU2733907C1
МОБИЛЬНЫЙ ДИАГНОСТИЧЕСКИЙ КОМПЛЕКС 2009
  • Тарабрин Владимир Федорович
  • Тарабрин Максим Владимирович
  • Юрченко Евгений Владимирович
  • Алексеев Александр Вольдемарович
  • Зайцев Сергей Александрович
  • Одынец Сергей Антонович
  • Медведицков Денис Александрович
  • Мельников Андрей Владимирович
  • Луговский Алексей Юрьевич
  • Семеник Максим Геннадьевич
  • Потехин Федор Федорович
RU2438903C2

Иллюстрации к изобретению RU 2 795 351 C1

Реферат патента 2023 года Способ оценки напряженно-деформированного состояния железнодорожного пути в условиях Крайнего Севера и Сибири

Изобретение относится к железнодорожному транспорту и касается контроля и оценки фактического состояния элементов железнодорожного пути и прилегающей инфраструктуры в условиях Крайнего Севера и Сибири. Согласно способу оценки напряженно-деформированного состояния железнодорожного пути, в соответствии со строением пути создают трехмерные конечно-элементные модели исследуемого участка железнодорожного пути с прилегающей к нему инфраструктурой, проводят гармонические нагружения трехмерных конечно-элементных моделей, жесткость элементов которых соответствует жесткости замерзшего и оттаявшего исследуемого участка железнодорожного пути с прилегающей к нему инфраструктурой. Результаты гармонических откликов нагружаемых трехмерных конечно-элементных моделей применяют для определения диапазона частот измеряемых параметров напряженно-деформированного состояния элементов пути. В результате повышается точность и достоверность определения характеристик напряженно-деформированного состояния железнодорожного пути в условиях Крайнего Севера и Сибири. 12 ил.

Формула изобретения RU 2 795 351 C1

Способ оценки напряженно-деформированного состояния железнодорожного пути в условиях Крайнего Севера и Сибири, заключающийся в том, что в соответствии со строением пути создают конечно-элементные модели исследуемого участка железнодорожного пути с прилегающей к нему инфраструктурой, отличающийся тем, что создают трехмерные конечно-элементные модели исследуемого участка железнодорожного пути, проводят гармонические нагружения трехмерных конечно-элементных моделей, жесткость элементов которых соответствует жесткости замерзшего и оттаявшего исследуемого участка железнодорожного пути с прилегающей к нему инфраструктурой, результаты гармонических откликов нагружаемых трехмерных конечно-элементных моделей применяют при определении диапазона частот измеряемых параметров напряженно-деформированного состояния элементов пути.

Документы, цитированные в отчете о поиске Патент 2023 года RU2795351C1

Орлова И.П
"Разработка технологии сейсмического мониторинга состояния транспортных сооружений в условиях Крайнего Севера и Сибири", диссертация к.т.н., 12.05.2022 [он-лайн] [найдено 31.03.2023]
Найдено в интернет

RU 2 795 351 C1

Авторы

Коссов Валерий Семенович

Волохов Григорий Михайлович

Оганьян Эдуард Сергеевич

Шабуневич Виктор Иванович

Даты

2023-05-03Публикация

2022-12-20Подача