Изобретение относится к области медицинских технологий для химических и физических лабораторий, предназначено для введения вирусных суспензий, и может быть использовано для проведения синхротронных и нейтронных исследований.
Известен «Капилляр» (Заявка WO2008114063A1, МПК B01L 3/00, дата приоритета 21/03/2007, опубликована 25/09/2008. Устройство содержит смесительный лабиринт, датчик, два микроканала (капилляров) с входным и выходным отверстием, что обеспечивает поток жидкости без образования воздушных пузырьков. Перемещение жидкости в данном устройстве предлагается несколькими способами: гидравлическим, электрическим и вакуумированием. В данном устройстве техническим решением для перемещения жидкости является особое строение капиллярного канала за счет шероховатости одной из стенок капилляра, а также соотношения ширины к диаметру (10:100). Данное техническое решение предназначено для смешивания образца и реагента для иммунологического анализа.
Известно «Устройство для перекачки жидкости и метод работы устройства для перекачки жидкости» (Заявка CN106999937A, МПК B01L 3/02 (2006.01), дата приоритета 04/12/2014, опубликована 12/05/2020»). Устройство содержит: электронную пипетку; электронное управляющее оборудование, контролирующее всасывание; пипетку-ретранслятор; наконечник; плунжер; контейнер для сброса жидкости. Данное устройство имеет недостаток в виде ограничения по выходной мощности двигателя (составляющее электронное управляющее оборудование). При перекачке образца с высоким коэффициентом вязкости возможна перегрузка и превышение скорости работы, что может привести к ошибке измерения.
Из наиболее близких аналогов известно «Дозатор с функциональной проверкой (Заявка US20200209274A1, МПК B01L 3/0227 (2006.01), дата приоритета 27/07/2017, опубликована 02/07/2020). Дозатор содержит пипетирующее устройство с электронным блоком управления, электродвигателем, всасывающим механизмом и датчиком давления. Данное устройство предназначено для точной дозировки, для транспортировки проб жидкости (исследуемого образца) в небольших объемах, а также для переноса жидкости между различными контейнерами для проб. Устройство имеет возможность работы с жидкостями с высоким коэффициентом вязкости. Недостатком устройства является диаметр всасывающего канала, который больше диаметра капилляра, что не решает проблемы введения суспензии в капилляр без образования пузырьков газа. К тому же, одноразовое использование данного устройства невозможно, так как из-за конструктивных особенностей чистка после введения вирусной суспензии будет осложнена.
Решается задача введения вирусной суспензии в капилляр без образования пузырьков газа для получения достоверных результатов при синхротронных исследованиях и возможности замены зараженного вирусными частицами элементов.
Технический результат заключается в доставке вирусной суспензии в капилляр без образования пузырьков газа и неоднородностей, что позволяет повысить достоверность измерений.
Сущность заключается в том, что система для введения суспензий в капилляр при проведении биолабораторных исследований включает пипетирующее устройство, содержащее последовательно установленные электронный блок управления, электродвигатель и всасывающий механизм, при этом на нижнем конце пипетирующего устройства установлен наконечник с иглой, снабженный клапаном. Нижерасположена вакуумная камера с мембраной крышкой, внутри которой зафиксирован капилляр, а на ее боковой поверхности имеется запорный клапан, соединяющийся с вакуумным насосом
При введении жидкости в капилляр могут образовываться пузырьки газа, которые будут препятствовать дальнейшему продвижению суспензии по сосуду. Негативное действие газовых пузырьков обусловлено явлением поверхностного натяжения: под вогнутым мениском жидкости возникает избыточное давление (давление Лапласа), величина которого:
Где σ - коэффициент поверхностного натяжения; r - радиус сосуда. При коэффициенте вязкости σ = 0,065 Н/м и радиусе сосуда r = 1*10-3 м, возникает давление P = 65 Па, которое препятствует продвижению жидкости. Вакуум (Рв = 1 Па) в камере и капилляре позволяет сделать вогнутый мениск выпуклым, что меняет направление действия давления Лапласа и способствует продвижению жидкости.
Сущность поясняется фигурой, на которой представлена схема системы для введения суспензий в капилляр при проведении биолабораторных исследований.
Система содержит пипетирующее устройство 1 включает электронный блок управления 2, подключенный к электродвигателю 3, который напрямую связан с всасывающем механизмом 4. На нижнем конце пипетирующего устройства расположен наконечник с иглой 5, на боковой поверхности которого имеется клапан 6. Наконечник с иглой 5 проходит насквозь мембранную крышку 7 вакуумной камеры 8, в которой расположен в капилляр 9, закрепленный фиксаторами 10. На боковой поверхности вакуумной камеры 8, установлен запирающий клапан 11, через который подключается вакуумный насос 12.
Устройство работает следующим образом:
Открывают запирающий клапан 11 на боковой поверхности вакуумной камеры 8. Через запирающий клапан 11 подключают вакуумный насос 12, при работе которого создаётся разряженная среда в вакуумной камере 8. После этого закрывают запирающий клапан 11 и выключают вакуумный насос 12. Открывают клапан 6 и в наконечник с иглой 5 набирают исследуемый образец при помощи всасывающего механизма 4, работа которого осуществляется с помощью электродвигателя 3, контролируемого электронным блоком управления 2. После забора образца клапан наконечника 6 закрывают. Далее, наконечник с иглой 5 вводят в вакуумную камеру 8 через мембраную крышку 7 в капилляр 9. Капилляр 9 размещён в вакуумной камере 8 и закреплен на фиксаторах 10. Наконечник с иглой 5 отсоединяют от пипетирующего устройства 1. При открытии клапана 6 наконечника 5 исследуемый образец закачивают в капилляр 9 под действием отрицательного давления. Крышку 7 отсоединяют от вакуумной камеры 8 и утилизируют вместе с наконечником с иглой 5 в дезинфицирующем растворе. При необходимости капилляр с исследуемым образцом герметично запаивают, и он может быть извлечён из вакуумной камеры 8.
Таким образом, система для введения суспензий в капилляр при проведении биолабораторных исследований позволила ввести вирусную суспензию в капилляр 9 без образования пузырьков газа для исследования методом малоуглового рентгеновского рассеяния на станции БиоМУР (КИСИ-Курчатов). Биологические образцы, содержащие вирусные частицы несут высокие риски заражения персонала, поэтому необходима герметичная система, позволяющая обезопасить рабочую группу от инфицирования при введении образца в капилляр. При этом обязательным требованием является однородность образцов в капилляре 9 для достоверных и воспроизводимых результатов. Пипетирующее устройство 1 для введения суспензий в капилляр 9 для биолабораторных исследований позволило получить однородные образцы без пузырьков газа и повысить достоверность результатов измерений, о чём свидетельствует снижение среднеквадратического отклонения (СКО) при измерении интенсивности рассеянных рентгеновских лучей на станции БиоМУР (см. таблицу 1).
Также, использование системы для введения суспензий в капилляр при проведении биолабораторных исследований позволило значительно снизить риски для персонала при работе с вирусными суспензиями, поскольку исключается возможность вытекания образца из капилляра.
название | год | авторы | номер документа |
---|---|---|---|
Устройство для хемилюминесцентного анализа | 2021 |
|
RU2781351C1 |
Тензиометр | 1980 |
|
SU941885A1 |
АВТОМАТИЗИРОВАННЫЙ СПОСОБ И СИСТЕМА ДЛЯ ПОЛУЧЕНИЯ И ПРИГОТОВЛЕНИЯ ОБРАЗЦА МИКРООРГАНИЗМА КАК ДЛЯ ИДЕНТИФИКАЦИИ, ТАК И ДЛЯ ТЕСТОВ НА ЧУВСТВИТЕЛЬНОСТЬ К АНТИБИОТИКАМ | 2016 |
|
RU2718086C2 |
УНИВЕРСАЛЬНАЯ СИСТЕМА ПОДГОТОВКИ ОБРАЗЦОВ И ПРИМЕНЕНИЕ В ИНТЕГРИРОВАННОЙ СИСТЕМЕ АНАЛИЗА | 2010 |
|
RU2559541C2 |
Способ посола мясопродуктов | 1988 |
|
SU1717063A1 |
СПОСОБ И МИКРОФЛЮИДНЫЙ ЧИП ДЛЯ КУЛЬТИВИРОВАНИЯ КЛЕТОК ИЛИ КЛЕТОЧНОЙ МОДЕЛИ | 2016 |
|
RU2612904C1 |
СПОСОБ ОЦЕНКИ КАЧЕСТВА ОБРАЗЦА ФЛАВИВИРУСА ДЛЯ ПОЛУЧЕНИЯ ТРЕХМЕРНОЙ СТРУКТУРЫ С ИСПОЛЬЗОВАНИЕМ ЛАЗЕРА НА СВОБОДНЫХ ЭЛЕКТРОНАХ | 2020 |
|
RU2741124C1 |
Устройство забора, дозирования и разведения биологической жидкости методом переключения дозирующих магистралей без применения подвижных элементов | 2022 |
|
RU2801353C1 |
УСТРОЙСТВО для ИЗЛ1ЕРЕНИЯ ПЛОТНОСТИ ТВЕРДЫХ ТЕЛ | 1967 |
|
SU202566A1 |
Способ отбора проб газа, растворенного в жидкости, и устройство для его осуществления | 1990 |
|
SU1763938A1 |
Изобретение относится к области медицинских технологий для химических и физических лабораторий, предназначено для введения вирусных суспензий и может быть использовано для проведения синхротронных и нейтронных исследований. Система включает пипетирующее устройство, содержащее последовательно установленные электронный блок управления, электродвигатель и всасывающий механизм, на нижнем конце пипетирующего устройства закреплен наконечник с иглой, снабженный клапаном, а под ним расположена вакуумная камера с мембранной крышкой, внутри которой зафиксирован капилляр, и на ее боковой поверхности установлен запорный клапан, соединенный с вакуумным насосом. Техническим результатом изобретения является доставка вирусной суспензии в капилляр без образования пузырьков газа и неоднородностей и повышение достоверности измерений. 1 ил., 1 табл.
Система для введения суспензий в капилляр при проведении биолабораторных исследований, включающая пипетирующее устройство, содержащее последовательно установленные электронный блок управления, электродвигатель и всасывающий механизм, отличающаяся тем, что на нижнем конце пипетирующего устройства закреплен наконечник с иглой, снабженный клапаном, а под ним расположена вакуумная камера с мембранной крышкой, внутри которой зафиксирован капилляр, и на ее боковой поверхности установлен запорный клапан, соединенный с вакуумным насосом.
US 20200209274 A1, 02.07.2020 | |||
US 2016341755 A1, 24.11.2016 | |||
US 10466263 B2, 05.11.2019 | |||
US 4091677 A, 30.05.1978 | |||
US 2009071266 A1, 19.03.2009 | |||
US 11311872 B2, 26.04.2022 | |||
CN 105492910 A, 13.04.2016 | |||
УСТРОЙСТВА ДЛЯ АВТОМАТИЧЕСКОГО ПРОВЕДЕНИЯ ИММУНОАНАЛИЗА ЗА НЕСКОЛЬКО ПОСЛЕДОВАТЕЛЬНЫХ ЭТАПОВ ПО МЕНЬШЕЙ МЕРЕ ОДНОГО БИОЛОГИЧЕСКОГО ВЕЩЕСТВА ИЗ МНОЖЕСТВА БИОЛОГИЧЕСКИХ ОБРАЗЦОВ, СПОСОБ И РЕАКТИВ ДЛЯ ПРИМЕНЕНИЯ УКАЗАННЫХ УСТРОЙСТВ | 1990 |
|
RU2102758C1 |
Авторы
Даты
2023-07-05—Публикация
2022-12-26—Подача