ТЕПЛОПРИЕМНИК Российский патент 2023 года по МПК G01K17/08 

Описание патента на изобретение RU2808217C1

Изобретение относится к технике измерения тепловых потоков и может быть использовано для длительного измерения тепловых потоков с широким динамическим диапазоном при повышенной точности измерений в условиях воздействия жестких механических нагрузок при проведении газодинамических испытаний.

Известен датчик теплового потока [патент США US 3599474, кл. G01K 17/00, опубл. 17.08.1971 г.], содержащий несущую основу, в которую встроена термобатарея, горячие концы которой расположены в центре основы по ее толщины, а холодные концы термобатареи выведены на край основы, к боковым краям которой подведены выводы источника постоянного тока, соединенные между собой через резистивный нагреватель, расположенный в основе.

Недостатком такого датчика является низкая механическая прочность и устойчивость, что объясняется отсутствием у него прочного механического корпуса. Кроме того, такой датчик имеет погрешность калибровки, которая вносится при включении источника тока и нагревании резистивного нагревателя, т.к. при таком конструктивном исполнении затруднительно нормировать распределение теплового потока по пространству несущей основы.

Известен также датчик теплового потока (патент на полезную модель РФ №108612. кл. G01 17/08, опубл. 20.09.2011 г.), содержащий несущую основу, представляющую из себя профилированную мембрану с расположенными на ней батареями термопар, перпендикулярными тепловому потоку и выполненными в виде поликремний-алюминиевых мезоструктур, покрытых сверху слоем защитного диэлектрического окисла, а также концентратор, крепящийся основанием к центру несущей основы.

Однако датчик имеет низкую стойкость и прочность при работе в условиях воздействия повышенных механических нагрузок, т.к. структура профиля основы не обладает антирезонанснымй свойствами в силу наличия множественной профилированности.

Кроме того, датчик имеет ограниченную температуру эксплуатации, время применения и невысокую точность измерения, т.к. не имеет термометра для измерения температуры тепловоспринимающего элемента и, соответственно, возможности корректировки показаний при нагреве, а также не имеет возможности самокалибровки, т.к. не имеет градуировочного резистора для имитации воздействия теплового потока. Введение соответствующих резистивных соединений в таком датчике и, соответственно, дополнительных контактных и коммутирующих соединений трудновыполнимо и нетехнологично, т.к. приведет к еще большему снижению стойкости и прочности в условиях воздействия повышенных механических нагрузок

Технический результат - увеличение стойкости и прочности работы датчика в условиях повышенных механических нагрузок при расширении динамического диапазона измеряемых тепловых потоков и снижении погрешности измерений.

Указанный технический результат достигается тем, что в теплоприемнике, содержащем основу в виде круга с градуировочным резистором, термометрическим терморезистором и термобатареей из последовательно соединенных термопар с горячими термоспаями, расположенными в центре круга и холодными термоспаями, расположенными по краям круга, Т-образный тепловоспринимаюший элемент в виде круга с концентратором температуры в центре, который прикреплен основанием своей Т-образной ножки к центру основы, корпус теплоприемника, кабель с соединительными проводниками, введены дополнительный корпус чувствительного элемента с теплопроводностью, соответствующей теплопроводности поверхности, на которой производится измерение теплового потока, и в который заключены тепловоспринимающий элемент с основой, к обратной стороне дополнительного корпуса чувствительного элемента прикреплен коммутационный узел с фиксирующим ее кольцом по резьбе на внутренней поверхности дополнительного корпуса чувствительного элемента, причем пространство дополнительного корпуса чувствительного элемента между коммутационным узлом и основой заполнено компаундом с низкой теплопроводностью, сам дополнительный корпус чувствительного элемента по своему внешнему диаметру закреплен к внутренней поверхности корпуса теплоприемника со стороны воздействия теплового потока, а проводники соединительного кабеля через промежуточные контакты на коммутационном узле соединены с горячим и холодным концами термобатареи, с концами градуировочного резистора и концами термометрического терморезистора.

На Фиг. 1 приведен эскиз конструкции предлагаемого теплоприемника.

Теплоприемник содержит 1 - основу с градуировочным резистором, термометрическим терморезистором и термобатареей, 2 - Т-образный тепловоспринимающий элемент, 3 - коммутационный узел, 4 - дополнительный корпус чувствительного элемента, 5 - контакты, 6 - компаунд с низкой теплопроводностью, 7 - кольцо, 8 - корпус датчика, 9 - кабель, 10 - контргайки корпуса теплоприемника.

Теплоприемник работает следующим образом. Т-образный тепловоспринимающий элемент через концентратор передает тепловой поток непосредственно на центральную часть основы. Плотность теплового потока, передаваемая концентратором на центральную часть основы, равна

где р2 - плотность падающего теплового потока;

S1 - площадь контакта концентратора с центральной частью несущей основы;

S2 - площадь тепловоспринимающего элемента, на которую падает измеряемый тепловой поток.

Под действием теплового потока в несущей основе 1 возникает разность температур между центральной частью и ее краем. Термобатарея из термопар преобразует возникшую разность температур в выходной электрический сигнал.

Плотность теплового потока (кВт/м2) пропорциональна термоЭДС термобатареи

где Е - выходной сигнал датчика, мВ;

R - сопротивление термометрического терморезистора при измерении Е, Ом;

R20 - сопротивление термометрического терморезистора при температуре t=20°С, Ом;

К20 - чувствительность теплоприемника при температуре t=20°С, мВ⋅м2/кВт;

α - температурный коэффициент чувствительности.

Здесь температура корпуса теплоприемника 8 измеряется по величине R термометрического терморезистора, расположенного на основе 1 непосредственно с ее края, примыкающего к корпусу чувствительного элемента 4.

При проведении градуировки теплоприемника при помощи встроенного в основу 1 градуировочного резистора, расположенного в центре основы 1, на него через проводники кабеля 9 и соответствующие контакты 5 подается электрический ток, который приводит к нагреву градуировочного резистора. Создаваемый таким образом тепловой градиент температуры в основе 1 приводит к появлению разницы температур холодных и горячих термоспаев термобатареи и к появлению разницы потенциалов на ее выводах, которая через соответствующие промежуточные контакты 5 выводится через кабель 9. По данному сигналу определяется эквивалентный тепловой поток.

Основа 1, тепловоспринимающий элемент 2, коммутационный узел 3 заключены в отдельный дополнительный корпус чувствительного элемента 4, теплопроводность которого соответствует теплопроводности поверхности, на которой будет производиться измерение теплового потока. Коммутационный узел 3 закреплен герметично изнутри дополнительного корпуса чувствительного элемента 4 с помощью кольца 7, а образованная ими полость залита компаундом 6 с низкой теплопроводностью. Дополнительный корпус чувствительного элемента 4 установлен в корпус теплоприемника 8, обладая с ним хорошим тепловым контактом. На поверхность, на которой производится измерение падающего теплового потока, теплоприемник устанавливается с помощью резьбового соединения заподлицо и фиксируется с помощью контргаек 10. Выходной сигнал, сигнал с термометрического терморезистора, электрический ток в градуировочный резистор подаются через кабель 9.

Приведенная конструкция теплоприемника имеет существенно большую стойкость и прочность в условиях повышенных механических нагрузок, что обеспечивается увеличением антивибрационных свойств теплоприемника за счет отдельного дополнительного корпуса чувствительного элемента 4, включающего в том числе коммутационный узел 3 и заполнения образованной полости с основой 1 компаундом 6 с низкой теплопроводностью.

Повышение точности измерения теплоприемника достигается путем уменьшения методической погрешности измерения за счет введения дополнительного корпуса чувствительного элемента 4 с теплопроводностью, соответствующей теплопроводности поверхности, на которой производится измерение теплового потока и обладающего тепловым контактом с корпусом теплоприемника 8, а также калибровкой теплоприемника с помощью градуировочного резистора на основе 1.

Проведенные испытания показали увеличение механической прочности теплоприемника на 60% при воздействии синусоидальной вибрации, а также уменьшение погрешности теплоприемника при измерении тепловых потоков в течение длительного времени при газодинамических испытаниях различных конструкций.

Похожие патенты RU2808217C1

название год авторы номер документа
Термоэлектрический пиргеометр 1938
  • Кислов В.П.
SU56926A1
Датчик пульсаций температуры потока жидкости 1980
  • Югов Владимир Алексеевич
  • Трохан Александр Маркович
  • Кузнецов Игорь Леонидович
  • Сурговито Вера Олеговна
SU922541A1
ТЕПЛОПРИЕМНИК 2023
RU2808218C1
Датчик теплового потока 1980
  • Декуша Леонид Васильевич
  • Мазуренко Александр Григорьевич
  • Федоров Владимир Григорьевич
  • Геращенко Олег Аркадьевич
  • Грищенко Татьяна Георгиевна
SU875222A1
ДАТЧИК ТЕМПЕРАТУРЫ С ЧУВСТВИТЕЛЬНЫМ ЭЛЕМЕНТОМ 2002
  • Васильев Г.А.
  • Ерохин С.А.
  • Сосновиков В.В.
  • Вербило А.С.
  • Клименко А.Н.
RU2215271C1
Датчик теплового потока 1982
  • Пшеничнов Юрий Анатольевич
SU1093914A1
Е П Т Б 1973
  • Авторы Изобретени
SU397785A1
ТЕРМОЭЛЕКТРИЧЕСКИЙ ГЕНЕРАТОР 2006
  • Ерофеев Римм Сергеевич
  • Сгибнев Игорь Владимирович
  • Ржевский Виктор Макарович
  • Тереков Анатолий Яковлевич
  • Ханин Евгений Владимирович
RU2305347C1
Датчик теплового потока 1985
  • Пшеничнов Юрий Анатольевич
SU1290102A1
Устройство для измерения теплового состояния поверхности горячего металла 1989
  • Шичков Александр Николаевич
  • Кузьминов Александр Леонидович
  • Быстров Леонид Григорьевич
  • Тихановский Владимир Алексеевич
  • Ябко Семен Борисович
  • Херинг Лудвиг
  • Зукер Марио
  • Зехер Бертрам
SU1699705A1

Иллюстрации к изобретению RU 2 808 217 C1

Реферат патента 2023 года ТЕПЛОПРИЕМНИК

Изобретение относится к технике измерения тепловых потоков и может быть использовано для длительного измерения тепловых потоков с широким динамическим диапазоном при повышенной точности измерений в условиях воздействия жестких механических нагрузок при проведении газодинамических испытаний. Заявлен теплоприемник, содержащий основу в виде круга с градуировочным резистором, термометрическим терморезистором и термобатареей из последовательно соединенных термопар с горячими термоспаями, расположенными в центре круга и холодными термоспаями, расположенными по краям круга, Т-образный тепловоспринимающий элемент в виде круга с концентратором температуры в центре, который прикреплен основанием своей Т-образной ножки к центру основы, корпус теплоприемника, кабель с соединительными проводниками, имеющий также дополнительный корпус чувствительного элемента с теплопроводностью, соответствующей теплопроводности поверхности, на которой производится измерение теплового потока, и в который заключены тепловоспринимающий элемент с основой. К обратной стороне дополнительного корпуса чувствительного элемента прикреплен коммутационный узел с фиксирующим ее кольцом по резьбе на внутренней поверхности дополнительного корпуса чувствительного элемента кольцом, причем пространство корпуса чувствительного элемента между коммутационным узлом и основой заполнено компаундом с низкой теплопроводностью. Дополнительный корпус чувствительного элемента по своему внешнему диаметру закреплен к внутренней поверхности корпуса теплоприемника со стороны воздействия теплового потока, а проводники соединительного кабеля через промежуточные контакты на коммутационном узле соединены с горячим и холодным концами термобатареи, с концами градуировочного резистора и концами термометрического терморезистора. Технический результат - увеличение стойкости и прочности работы датчика в условиях повышенных механических нагрузок при расширении динамического диапазона измеряемых тепловых потоков и снижении погрешности измерений. 1 ил.

Формула изобретения RU 2 808 217 C1

Теплоприемник, содержащий основу в виде круга с градуировочным резистором, термометрическим терморезистором и термобатареей из последовательно соединенных термопар с горячими термоспаями, расположенными в центре круга и холодными термоспаями, расположенными по краям круга, Т-образный тепловоспринимающий элемент в виде круга с концентратором температуры в центре, который прикреплен основанием своей Т-образной ножки к центру основы, корпус теплоприемника, кабель с соединительными проводниками, отличающийся тем, что введен дополнительный корпус чувствительного элемента с теплопроводностью, соответствующей теплопроводности поверхности, на которой производится измерение теплового потока, и в который заключены тепловоспринимающий элемент с основой, к обратной стороне дополнительного корпуса чувствительного элемента прикреплен коммутационный узел с фиксирующим ее кольцом по резьбе на внутренней поверхности дополнительного корпуса чувствительного элемента, причем пространство дополнительного корпуса чувствительного элемента между коммутационным узлом и основой заполнено компаундом с низкой теплопроводностью, сам дополнительный корпус чувствительного элемента по своему внешнему диаметру закреплен к внутренней поверхности корпуса теплоприемника со стороны воздействия теплового потока, а проводники соединительного кабеля через промежуточные контакты на коммутационном узле соединены с горячим и холодным концами термобатареи, с концами градуировочного резистора и концами термометрического терморезистора.

Документы, цитированные в отчете о поиске Патент 2023 года RU2808217C1

CN 111829694 A 27.10.2020
CN 111024269 A 17.04.2020
Устройство для измерения температуры свода в металлургических печах 1956
  • Митин И.Г.
SU108612A1
Способ изготовления светофильтров 1933
  • Гуревич С.Г.
SU35565A1
Косоотбивная бабка 1925
  • Якубов М.М.
SU28771A1
CN 203643055 U 11.06.2014
CN 108562381 A 21.09.2018.

RU 2 808 217 C1

Даты

2023-11-27Публикация

2023-02-21Подача