ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Изобретение относится к технологии изготовления микросхем.
УРОВЕНЬ ТЕХНИКИ
Из уровня техники известен способ изготовления микросхем методом фотолитографии. (https://mipt.ru>medialibrary Литография в микроэлектронике, А.Н. Росоленко). Суть процесса фотолитографии сводится к тому, что вначале на обрабатываемую поверхность наносится тонкая фоточувствительная полимерная пленка (фоторезист). Затем эта пленка засвечивается через фотошаблон с заданным рисунком. Далее проэкспонированные участки удаляются в проявителе. Получившийся на фоторезисте рисунок используется для таких технологических этапов планарной технологии как травление, электроосаждение, вакуумное напыление, и другие. После проведения одного из этих процессов оставшийся, не удаленный при проявлении фоторезист также удаляется. Наименьшие размеры деталей рисунка достижимые в фотолитографии (разрешение) определяются длиной волны, используемого излучения, качеством применяемой при экспонировании оптики, свойствами фоторезиста. Для повышения разрешения осуществлен переход на технологию экстремальной ультрафиолетовой литографии, или EUV литография. В ней используется источник, который излучает свет длиной волны 13,5 нм. К существенным недостаткам EUV относятся сложные методы оптической коррекции. В результате фотошаблон становится дорогим и сложным. Стоимость литографа достигает 30% от всех производимых расходов. Стоимость установки 150 млн. долларов, масса 180 т, потребление электроэнергии 1МВт, потребление 1,5 тонны воды в минуту для охлаждения. При этом производительность установки составляет 100 пластин в час диаметром 300 мм.
Наиболее близким к заявленному способу, по решаемой технической задаче - упрощение технологии изготовления микросхем, является способ наноимпринтной литографии (https://ostec-group.ru Наноимпринтная литография. Материалы и технологии). Наноимпринтная литография (НИЛ) - перенос изображения микросхемы на подложку с покрытием прямым воздействие пресс-формы (штампа) с последующим травлением деформированного покрытия и формированием на подложке элементов микросхемы.
Существует два основных метода НИЛ - термический и ультрафиолетовый. В термическом методе штамп вдавливается в полимер, нагретый выше температуры стеклования, затем происходит охлаждение и извлечение штампа. В ультрафиолетовом методе штамп из прозрачного материала погружается в жидкий полимер, который отверждается под действием ультрафиолета, после чего происходит извлечение штампа. Штамп изготавливается из металла, кварца. Изготавливают штамп методом электронной литографии. На поверхность штампа в масштабе 1:1 наносится рельефный рисунок (глубиной до нескольких миллиметров) элементов микросхемы. Перед проведением процесса НИЛ штамп покрывается антиадгезионным покрытием. Преимуществами способа прототипа являются отсутствие сложных и дорогостоящих оптических или электронно-лучевых систем. С помощью прямого воздействия можно создавать элементы шириной в единицы нанометров. Кроме того, НИЛ позволяет формировать отпечатки по всей поверхности пластины, что повышает производительность процесса.
К недостаткам способа прототипа относятся сложности совмещения штампа с уже существующей топологией на пластине, необходимость частой очистки штампа и нанесения антиадгезионного слоя, повышенные требования к качеству штампа.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Технической задачей предлагаемого изобретения является упрощение технологии изготовления микросхем.
Поставленная задача решена благодаря тому, что в способе изготовления микросхем при переносе изображения микросхемы на подложку, на пластину фоторезиста, отдельно от подложки, наносят слой адгезивного материала, пластину фоторезиста устанавливают таким образом, что с одной стороны расположена камера для магнитных наночастиц с впускным и выпускным устройствами, а с другой стороны индуктор с выполненным на его поверхности рельефным рисунком элементов микросхемы и соединенный с полюсом сердечника электромагнита, открывают впускное устройство, камеру заполняют магнитными наночастицами поступающими из установки по синтезу магнитных наночастиц, впускное устройство закрывают, открывают выпускное устройство, по обмотке электромагнита пропускают постоянный электрический ток, под действием рабочего магнитного потока индуктора магнитные наночастицы приходят в ускоренное движение в направлении выступов индуктора и оседают слоем на поверхности пластины фоторезиста формируя нерастворимые участки рисунка элементов микросхемы, выпускное устройство закрывают, пластину фоторезиста соединяют с подложкой, проявляют, производят травление, удаляют фоторезист, формируют на подложке элементы электронной схемы.
Как будет понятно специалисту, преимущества предлагаемого способа по сравнению с выбранным прототипом достигаются тем, что нерастворимые участки рисунка элементов микросхемы формируют бесконтактным методом осаждения магнитных наночастиц на поверхность фоторезиста отдельно от подложки, а перенос изображения микросхемы на подложку осуществляется после соединения с фоторезистом.
КРАТКОЕ ОПИСАНИЕ ФИГУР ЧЕРТЕЖЕЙ
На Фиг. 1 представлен общий вид технологической установки по формированию на фоторезисте нерастворимых участков рисунка элементов микросхемы.
На Фиг. 2 представлен вид индуктора в аксонометрической проекции: а - вид индуктора вначале технологического процесса; б - вид индуктора в одном из последующих этапов технологического процесса.
На Фиг. 3 представлен схематичный чертеж процесса осаждения магнитных наночастиц на фоторезист при включении электромагнита.
На Фиг. 4 представлен схематичный чертеж после осаждения магнитных наночастиц на фоторезист при выключенном электромагните.
На Фиг. 5 представлена схема технологического процесса переноса изображения микросхемы на подложку:
а - соединение пластины фоторезиста с подложкой;
б - проявление;
в - травление;
г - удаление фоторезиста.
На Фиг. 6 представлен схематичный чертеж объединенной группы индукторов.
Позициями 1-13 обозначены:
1 - установка синтеза магнитных наночастиц;
2 - камера для магнитных наночастиц;
3 - впускное устройство;
4 - выпускное устройство;
5 - пластина фоторезиста;
6 - слой адгезивного материала;
7 - индуктор;
8 - электромагнит;
9 - рабочий магнитный поток;
10 - наночастицы;
11 - слой наночастиц;
12 - подложка;
13 - оксидный слой.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Технологический процесс изготовления микросхем предлагаемым способом включает в себя два этапа. На первом этапе производится формирование нерастворимых участков рисунка элементов микросхемы на фоторезисте. На втором этапе производится перенос изображения на подложку после соединения с фоторезистом.
Технологическая установка по формированию на фоторезисте нерастворимых участков рисунка элементов микросхемы состоит из установки синтеза наночастиц 1, камеры для наночастиц 2, с впускным 3 и выпускным 4 устройствами, пластины фоторезиста 5, индуктора 7, соединенного с сердечником электромагнита 8 (Фиг. 1). Из уровня техники известен ряд общих методов получения наночастиц, большинство из которых могут быть использованы для получения магнитных наночастиц. Технология синтеза магнитных наночастиц должна соответствовать определенным требованиям. Необходимо получать частицы заданного размера и формы, с небольшим разбросом по размеру и поддающимся контролю. Методика синтеза должна быть относительно простой, недорогостоящей, дающей воспроизводимые результаты. Наиболее предпочтительным представляется метод молекулярных пучков. В вакуумной камере с диафрагмой происходит испарение металла (Fe, Ni, Со) при обработке плазмой, лазером, электрической дугой. Испаряющиеся частицы проходят через диафрагму образуя молекулярный пучок. В этом методе в пучке получаются в значительной степени «свободные» наночастицы заданных размеров и форм с минимальным разбросом по размеру и поддающимся контролю. Для повышения разрешения необходим синтез наночастиц минимального размера (1-3 нм).
Для формирования на пластине фоторезиста 5 нерастворимых и растворимых участков применяется индуктор 7. Индуктор изготавливается из материала с большой магнитной проницаемостью (Fe, Ni, Со, сплавы). На поверхности индуктора методом электронной литографии в масштабе 1:1 выполняется рельефный рисунок элементов электронной схемы. Рельефный рисунок представляет собой выступы различной формы и размеров, разделенные углублениями (Фиг. 2а). При переносе изображения других групп элементов схемы на подложку, на следующем этапе технологического процесса, применяется индуктор с соответствующим рельефным рисунком (Фиг. 2б). Индуктор соединен с полюсом электромагнита 8.
Заявляемый способ осуществляют следующим образом. На пластину фоторезиста 5 наносят слой адгезивного материала 6. Пластину фоторезиста устанавливают между камерой для наночастиц 2 и индуктором 7. Открывают впускное устройство 3, камеру 2 заполняют магнитными наночастицами 10 поступающими из установки по синтезу магнитных наночастиц 1, впускное устройство 3 закрывают, открывают выпускное устройство 4, по обмотке электромагнита 8 пропускают постоянный электрический ток. Под действием рабочего магнитного потока 9 индуктора магнитные наночастицы 10 приходят в ускоренное движение в направлении выступов индуктора 7. Первый слой магнитных наночастиц 11 на поверхности пластины фоторезиста 5 образуют наночастицы прилипшие к слою адгезивного материала 6, на который оседают следующими слоями другие наночастицы, формируя тем самым нерастворимые участки рисунка элементов микросхемы. Выпускное устройство закрывают. После выключения электромагнита 8 магнитные наночастицы удерживаются друг с другом под действием остаточной намагниченности и сил взаимодействия между собой (Фиг. 3, Фиг. 4). Для реализации предлагаемого способа достаточно наличие только плотного первого слоя магнитных наночастиц на поверхности фоторезиста. Количество слоев и плотность покрытия зависит от концентрации магнитных наночастиц в камере, индукции магнитного поля, времени «экспонирования». Таким образом на поверхности фоторезиста 5 формируются в соответствии с электронной схемой участки закрытые слоем наночастиц и открытые участки. После «экспонирования» пластину фоторезиста 5 соединяют с окисленной поверхностью 13 подложки 12. (Фиг. 5а). Затем подложку с рисунком проявляют (Фиг. 5б). Те участки, которые закрыты слоем наночастиц 11, не растворяются в кислоте, а участки, которые остались открытыми, растворяются. Растворенные участки обнажают поверхность оксида кремния. Полученную подложку с нанесенной на ней рельефной схемой расположения изолирующих переходов промывают и сушат. После травления незащищенных участков оксида кремния (Фиг. 5в), закрытый слоем наночастиц слой фоторезиста удаляют химическим и физическим способами (Фиг. 5г). Таким образом на подложке получают «окна». Через обнаженные участки подложки методом диффузии вводят примеси. На полученных изолированных друг от друга участках подложки различными методами (вторичная диффузия, травление, наращивание и т.д.) получают активные и пассивные элементы схемы и токопроводящие пленки.
Для повышения производительности установки индукторы 7 объединяются в группы (Фиг. 6).
Преимуществами предлагаемого способа изготовления микросхем являются низкая стоимость оборудования. В технологии изготовления микросхем применяются освоенные в производстве методы синтеза наночастиц, метод электронной литографии, используемые фоторезисты и химические реагенты. Простота процесса. Бесконтактный метод переноса изображения определяет долговечность использования индукторов, упрощает совмещение рельефного рисунка другого индуктора с уже существующей топологией на пластине. Возможность достижения низких топологических норм. Соединение нескольких индукторов в группу, а группы в кассету определенной длины позволяет повысить производительность.
Сущность предлагаемого способа изготовления микросхем соответствует наименованию - метод наномагнитной литографии.
название | год | авторы | номер документа |
---|---|---|---|
Способ изготовления шаблона | 1988 |
|
SU1788532A1 |
МАСКА ДЛЯ БЛИЖНЕПОЛЬНОЙ ЛИТОГРАФИИ И ЕЕ ИЗГОТОВЛЕНИЕ | 2011 |
|
RU2544280C2 |
Способ снижения температурных напряжений при обработке полупроводниковых пластин с развитой по высоте топографией и полупроводниковая пластина с предохранительной структурой для этого способа (варианты) | 2020 |
|
RU2753840C1 |
ФОТОШАБЛОН ДЛЯ ФОТОЛИТОГРАФИИ | 1997 |
|
RU2114485C1 |
Способ изготовления проводящей наноячейки с квантовыми точками | 2021 |
|
RU2777199C1 |
НАНОЭЛЕКТРОМЕХАНИЧЕСКИЙ РЕЗОНАТОР И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2022 |
|
RU2808137C1 |
СПОСОБ И УСТРОЙСТВО НАНЕСЕНИЯ НАНОРИСУНКА НА БОЛЬШИЕ ПЛОЩАДИ | 2008 |
|
RU2488188C2 |
ОРГАНИЧЕСКИЙ ЭЛЕКТРОЛЮМИНЕСЦЕНТНЫЙ ЭЛЕМЕНТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2010 |
|
RU2490832C2 |
Технологии получения гибких и прозрачных электронных компонентов на основе графеноподобных структур в полимере для электроники и микроэлектроники | 2021 |
|
RU2778215C1 |
Способ изготовления МДП-микросхем методом пошагового репродуцирования | 1984 |
|
SU1199155A1 |
Изобретение относится к технологии изготовления микросхем. Технический результат - упрощение технологии изготовления микросхем. Технический результат достигается тем, что в способе изготовления микросхем при переносе изображения микросхемы на подложку на пластину фоторезиста, отдельно от подложки, наносят слой адгезивного материала. Пластину фоторезиста устанавливают таким образом, что с одной стороны расположена камера для магнитных наночастиц с впускным и выпускным устройствами, а с другой стороны индуктор, с выполненным на его поверхности рельефным рисунком элементов микросхемы, и соединенный с полюсом сердечника электромагнита. Открывают впускное устройство, камеру заполняют магнитными наночастицами, поступающими из установки по синтезу магнитных наночастиц, впускное устройство закрывают. Открывают выпускное устройство, по обмотке электромагнита пропускают постоянный электрический ток, под действием рабочего магнитного потока индуктора магнитные наночастицы приходят в ускоренное движение в направлении выступов индуктора и оседают слоем на поверхности пластины фоторезиста, формируя нерастворимые участки рисунка элементов микросхемы, выпускное устройство закрывают. Пластину фоторезиста соединяют с подложкой, проявляют, производят травление, удаляют фоторезист, формируют на подложке элементы электронной схемы. 6 ил.
Способ изготовления микросхем, включающий перенос изображения электронной схемы на подложку с покрытием с последующим травлением покрытия и формированием на подложке элементов электронной схемы, заключающийся в том, что при переносе изображения микросхемы на подложку на пластину фоторезиста отдельно от подложки наносят слой адгезивного материала, пластину фоторезиста устанавливают в технологической установке таким образом, что с одной стороны расположена камера для магнитных наночастиц с впускным и выпускным устройствами, а с другой стороны индуктор с выполненным на его поверхности рельефным рисунком элементов микросхемы, соединенный с полюсом сердечника электромагнита, открывают впускное устройство, камеру заполняют магнитными наночастицами, поступающими из установки по синтезу магнитных наночастиц, впускное устройство закрывают, открывают выпускное устройство, по обмотке электромагнита пропускают постоянный электрический ток, под действием рабочего магнитного потока индуктора магнитные наночастицы приходят в ускоренное движение в направлении выступов индуктора и оседают слоем на поверхности пластины фоторезиста, формируя нерастворимые участки рисунка элементов микросхемы, выпускное устройство закрывают, пластину фоторезиста соединяют с окисленной поверхностью подложки, проявляют, производят травление открытых участков, в результате которого обнажается поверхность подложки, образуя рельефную схему расположения изолирующих переходов, удаляют закрытый слоем наночастиц фоторезист, в результате чего образуются окна на подложке, формируют на изолированных друг от друга участках подложки активные, пассивные элементы электронной схемы и токопроводящие пленки.
СПОСОБ И УСТРОЙСТВО НАНЕСЕНИЯ НАНОРИСУНКА НА БОЛЬШИЕ ПЛОЩАДИ | 2008 |
|
RU2488188C2 |
СПОСОБ ПОЛУЧЕНИЯ НАНОЛИТОГРАФИЧЕСКИХ РИСУНКОВ С УПОРЯДОЧЕННОЙ СТРУКТУРОЙ СО СВЕРХРАЗВИТОЙ ПОВЕРХНОСТЬЮ | 2021 |
|
RU2757323C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ГЛУБОКОПРОФИЛИРОВАННЫХ КРЕМНИЕВЫХ СТРУКТУР | 2010 |
|
RU2437181C1 |
СРЕДСТВО ЗАЩИТЫ ОТ ПЛЕСЕНИ | 2013 |
|
RU2524266C1 |
Многоступенчатая активно-реактивная турбина | 1924 |
|
SU2013A1 |
Авторы
Даты
2023-12-11—Публикация
2023-01-27—Подача