Изобретение относится к машиностроению, в частности насосостроению, и может быть использовано для управлений работой гидроприводов, а также при конструировании устройств для перекачивания различных жидкостей.
Известен способ управления напором и расходом ультразвукового насоса путем изменения диаметра капилляра, температуры жидкости и угла наклона капилляра к излучающей поверхности.
Недостатком способа является низкая эффективность, связанная с тем, что нелинейная зависимость напора и расхода ультразвукового насоса от каждого из вышеперечисленных параметров значительно усложняет управление работой насоса; кроме того, данный способ не дает возможности осуществлять изменение направления движения жидкости в насосе.
Наиболее близок к изобретению способ управления напором и расходом ультразвукового насоса при воздействии акустических колебаний, согласно которому в насосе, содержащем излучатель, отражающую поверхность в виде торцовой части входного конца капилляра, изменяет форму отражающей поверхности.
Недостатком способа является низкая эффективность управления, обусловленная невозможностью реверсирования потока жидкости в насосе, а также сложностью управления напором и расходом насоса из-за трудностей изменения формы входного конца капилляра.
Техническим результатом, получаемым при осуществлении изобретения, является повышение эффективности управления напором и расходом ультразвукового насоса.
Указанный результат достигается тем, что при воздействии акустических колебаний в ультразвуковом насосе, содержащем излучающую и отражающую поверхности, изменяют угол между осью излучения и отражающей поверхностью, а также поворачивают отражающую поверхность вокруг оси излучателя.
На чертеже схематично изображен ультразвуковой насос.
Насос содержит излучающую и отражающую поверхности 1, 2, жидкость 3.
Реализация способа осуществляется следующим образом.
При изменении угла α между осью излучения и отражающей поверхностью 2 происходит изменение составляющих микроструек, образующихся у отражающей поверхности 2 при схлопывании кавитирующих пузырьков. Поскольку при схлопывании кавитирующего пузырька у твердой поверхности (отражающей поверхности) возникает микроструйка, направленная по нормали к этой поверхности. Отраженную от твердой поверхности микроструйку можно представить в виде двух составляющих, одна из которых направлена перпендикулярно, вторая параллельно оси излучения. Складываясь, составляющие образуют поток жидкости насоса. Таким образом, изменяя угол α между отражающей поверхностью 2 и осью излучения, можно регулировать расход и напор насоса.
Изменение угла α при этом производится в плоскости, параллельной оси излучения.
Управление насосом можно также осуществить поворотом отражающей поверхности 2 только в плоскости, перпендикулярной оси излучения. В этом случае изменяется направление потока жидкости, а изменения напора и расхода не происходит. Таким образом, изменяя угол α между отражающей и излучающей поверхностями в плоскости, параллельной оси излучения, можно регулировать напор и расход насоса, а изменения угла α в плоскости, перпендикулярной оси излучения, приведут к изменениям направления потока жидкости. Управление можно осуществлять как поочередно, изменением углов в плоскостях, параллельных или перпендикулярных оси излучения, так и одновременно в двух плоскостях. Действия по управлению насосом определяются конкретными задачами управления. Управление с помощью поворота отражающей поверхности вокруг оси излучения осуществляется согласно вышеописанному механизму схлопывания кавитирующих пузырьков у отражающей поверхности.
Таким образом, применяя описанный способ управления напором и расходом ультразвукового насоса, можно не только регулировать напор и расход, но и осуществлять реверсирование потока жидкости насоса.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ВОЗБУЖДЕНИЯ АКУСТИЧЕСКИХ КОЛЕБАНИЙ В ТЕКУЧЕЙ СРЕДЕ И УСТРОЙСТВО (ВАРИАНТЫ) ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2011 |
|
RU2476261C1 |
ЭКСТРАКТОР ДЛЯ СИСТЕМЫ ТВЕРДОЕ ТЕЛО - ЖИДКОСТЬ | 1992 |
|
RU2053006C1 |
СПОСОБ ПОЛУЧЕНИЯ ЭНЕРГИИ, УСТРОЙСТВО ДЛЯ ЕЕ ПОЛУЧЕНИЯ И СИСТЕМА УПРАВЛЕНИЯ УСТРОЙСТВОМ | 2004 |
|
RU2280823C2 |
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ УЛЬТРАЗВУКОВОЙ ЛИПОСАКЦИИ | 2003 |
|
RU2247544C1 |
СПОСОБ ГИДРОДИНАМИЧЕСКОЙ ОБРАБОТКИ ПОВЕРХНОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2003 |
|
RU2250145C2 |
Устройство для ультразвуковой очистки изделий | 2017 |
|
RU2680030C1 |
ВРЕЗНАЯ СЕКЦИЯ УЛЬТРАЗВУКОВОГО РАСХОДОМЕРА | 2004 |
|
RU2277700C2 |
Способ разупрочнения горной массы | 1990 |
|
SU1794186A3 |
Способ испытаний кавитационной эрозии | 2020 |
|
RU2739145C1 |
СПОСОБ ОХЛАЖДЕНИЯ С ПОМОЩЬЮ МИКРОСТРУЙ | 2011 |
|
RU2452048C1 |
Использование: в машиностроении, в частности в насосостроении, может быть использовано для управления работой гидроприводов, а также при конструировании устройств для перекачивания различных жидкостей. Сущность изобретения: при воздействии акустических колебаний в ультразвуковом насосе, содержащем излучающую и отражающую поверхности 1, 2, выполненные в виде плоскостей, изменяют угол α между осью излучения и отражающей поверхностью 2, а также поворачивают отражающую поверхность 2 вокруг оси излучения. 1 з.п. ф-лы, 1 ил.
Прохоренко П.П и др | |||
Ультразвуковой капиллярный эффект, М., 1981, с.11-13. |
Авторы
Даты
1995-02-09—Публикация
1990-05-07—Подача