КОНСТРУКЦИОННАЯ СТАЛЬ Российский патент 1995 года по МПК C22C38/50 

Описание патента на изобретение RU2033464C1

Изобретение относится к черной металлургии, а именно к производству сталей для глубокой вытяжки.

Обширная номенклатура сталей для глубокой вытяжки приведена в ТУ 14-1-4044-85, ТУ 14-1-2376-78 и ТУ 3-1078-78. Известна сталь марки 10ХЗГНФА по ТУ 14-3-1699-90, имеющая следующий химический состав, мас. Углерод 0,08-0,13 Кремний 0,17-0,40 Марганец 2,50-3,00 Хром 2,50-3,00 Никель 0,40-0,80 Ванадий 0,05-0,11 Железо Остальное Данная сталь обеспечивает: Предел текучести, МПа 1000 Относительное сужение, 13
Указанная сталь имеет низкий уровень пластических свойств. Так величина ударной вязкости не превышает 0,6 МДж/м2.

Известна также сталь (авторское свидетельство СССР N 621783, кл. С 22 С 38/14, 1978), которая имеет состав, мас. Углерод 0,08-0,14 Марганец 0,05-0,25 Кремний 0,40-0,90 Титан 0,005-0,10 Алюминий 0,025-0,02 Азот 0,003-0,01 Железо Остальное
Данная сталь обеспечивает сравнительно низкий комплекс механических свойств: Предел текучести, МПа 290 Предел прочности, МПа 470 Относительное удлинение, 30
Ударная вязкость при +20оС, МДж/м2 1,1
Ударная вязкость при -40оС, МДж/м2 0,7
Известна также сталь (авт.св. СССР N 491722, кл. С 22 С 38/58, 1973), имеющая следующий химический состав, мас. Углерод 0,05-0,10 Марганец 1,00-3,50 Хром 1,50-4,50 Никель 0,60-4,00 Молибден 0,20-1,80 Алюминий 0,05-0,50 Церий 0,10-0,50 Кальций 0,10-0,50 Железо Остальное
Указанная сталь имеет низкий уровень величины ударной вязкости, особенно при температуре -40оС.

Указанная сталь обеспечивает: Предел текучести, МПа 480 Предел прочности, МПа 620 Относительное удлинение, 24 Относительное сужение, 70
Ударная вязкость, МДж/м2 при +20оС 2,0 при -40оС 1,8
Известна также сталь [1] имеющая следующий химический состав, мас. Углерод 0,04-0,11 Марганец 0,80-1,20 Хром 2,60-3,10 Молибден 0,20-0,30 Никель 0,80-1,20 Алюминий 0,01-0,03 Железо Остальное
Данная сталь является наиболее близкой к заявляемой и выбрана в качестве прототипа. Однако наличие в стали алюминия в количестве 0,01-0,03% приводит к образованию крупных остроугольных и труднодеформируемых включений, таких как алюминаты, алюмосиликаты и нитриды алюминия. Это, в свою очередь, приводит к снижению пластических свойств стали и ухудшению штампуемости, особенно в холодном состоянии.

Целью изобретения является повышение штампуемости в холодном состоянии при сохранении высокого уровня механических свойств.

Для достижения указанной цели в сталь, содержащую углерод, хром, никель, молибден, марганец, кремний и железо, дополнительно вводят ванадий, ниобий и титан при следующем соотношении компонентов, мас. Углерод 0,09-0,16 Кремний 0,20-0,40 Марганец 0,80-1,20 Хром 2,90-3,40 Никель 0,80-1,20 Молибден 0,20-0,30 Ванадий 0,03-0,15 Ниобий 0,02-0,07 Титан 0,03-0,15 Железо Остальное
Отличительным от прототипа признаком предлагаемой стали является дополнительное введение в известную сталь ванадия, ниобия и титана, таким образом, предлагаемая сталь обладает новизной.

При совместном легировании стали ванадием, ниобием и титаном в указанных пределах происходит образование мелкодисперсных карбонитридов ванадия и титана и нитридов ниобия, что способствует повышению механических свойств. В то же время связывание углерода и азота в карбонитриды, так называемая стабилизация, повышает штампуемость стали в холодном состоянии.

Неизвестны стали для глубокой вытяжки, содержащие в своем составе ванадий, ниобий и титан для достижения той же цели, что и заявляемая в качестве изобретения сталь, т.е. повышения штампуемости при сохранении механических свойств.

Опробование предлагаемой стали осуществляли в ЦНИИМатериалов.

Сталь выплавляли в 60-кг индукционной печи с разливкой в 30 кг слитки. Из слитков были изготовлены прутки для определения механических свойств и листовые заготовки толщиной 1 мм для определения штампуемости.

Штампуемость стали оценивали по коэффициенту свертки при вытяжке цилиндрического колпачка из диска диаметром 100 мм и толщиной 1 мм.

Коэффициент свертки рассчитывали по формуле
К d2/d1, где d2 диаметр колпачка;
d1 100 мм исходный диаметр листовой заготовки.

При этом чем меньше коэффициент свертки, тем лучше штампуемость стали.

Механические свойства и штампуемость стали, взятой в качестве прототипа (1), заявляемой на нижнем, среднем и верхнем (3, 4, 5) пределах компонентов, а также выходящей за нижний и верхний (2, 6) пределы приведены в табл. 1 и 2.

Результаты изучения механических свойств и штампуемости стали показали ее преимущество по сравнению со сталью, взятой в качестве прототипа. Лучшие сочетания механических свойств и штампуемости получены при добавке титана и ванадия в количествах 0,03-0,15% а ниобия 0,02-0,07% В этом случае коэффициент свертки составляет 0,30-0,40.

При введении в состав стали титана, ванадия и ниобия в количествах ниже нижнего предела, указанного в формуле изобретения, штампуемость увеличивается незначительно.

Введение в состав стали титана, ванадия и ниобия в количествах выше верхнего предела, указанного в формуле изобретения, приводит к повышению прочности металла и снижению штампуемости стали в холодном состоянии.

Таким образом, заявляемая сталь обладает повышенной штампуемостью в холодном состоянии.

Технико-экономические преимущества использования предлагаемой стали по сравнению с прототипом заключаются в повышении выхода годного при глубокой вытяжке корпусов баллонов.

При повышении штампуемости на 40% (снижение коэффициента свертки с 0,65 до 0,40) увеличение выхода годного составляет 8%

Похожие патенты RU2033464C1

название год авторы номер документа
КОНСТРУКЦИОННАЯ СТАЛЬ 1996
  • Гаевский В.В.
  • Иванов Э.А.
  • Корольков В.А.
  • Кобылин Р.А.
  • Кузнецов В.А.
  • Клебанов Р.С.
  • Макаровец Н.А.
  • Голованов А.В.
  • Тишков В.Я.
RU2104325C1
КОНСТРУКЦИОННАЯ СТАЛЬ 2001
  • Федулов С.А.
RU2207396C2
СТАЛЬ СПС-430 2010
  • Просвиряков Геннадий Александрович
  • Сильников Михаил Владимирович
  • Сильников Никита Михайлович
RU2434071C2
СВАРИВАЕМАЯ СТАЛЬ 1992
  • Легостаев Ю.Л.
  • Горынин И.В.
  • Малышевский В.А.
  • Игнатов В.А.
  • Семичева Т.Г.
  • Круглова А.А.
  • Купчиков Г.Н.
RU2009261C1
КОРРОЗИОННО-СТОЙКАЯ СТАЛЬ 2000
  • Петров Ю.Н.
  • Хомякова Н.Ф.
  • Мурунов А.И.
  • Таволжанов А.Н.
  • Левин В.Г.
RU2184793C2
СВАРОЧНАЯ ПРОВОЛОКА ДЛЯ АВТОМАТИЧЕСКОЙ СВАРКИ ТЕПЛОУСТОЙЧИВЫХ СТАЛЕЙ ПЕРЛИТНОГО КЛАССА 2010
  • Карзов Георгий Павлович
  • Галяткин Сергей Николаевич
  • Михалева Эмма Ивановна
  • Яковлева Галина Петровна
  • Литвинов Сергей Геннадьевич
  • Ворона Роман Александрович
RU2451588C2
ВЫСОКОПРОЧНАЯ ИЗНОСОСТОЙКАЯ СТАЛЬ ДЛЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ МАШИН (ВАРИАНТЫ) 2015
  • Хлусова Елена Игоревна
  • Голосиенко Сергей Анатольевич
  • Рябов Вячеслав Викторович
  • Сошина Татьяна Викторовна
  • Зисман Александр Абрамович
  • Орлов Виктор Валерьевич
  • Беляев Виталий Анатольевич
  • Шумилов Евгений Алексеевич
RU2606825C1
Сталь 1991
  • Баландин Александр Юрьевич
  • Петров Андрей Владимирович
  • Просвиряков Геннадий Александрович
SU1770443A1
СОСТАВ СВАРОЧНОЙ ПРОВОЛОКИ 2000
  • Горынин И.В.
  • Карзов Г.П.
  • Журавлев Ю.М.
  • Галяткин С.Н.
  • Михалева Э.И.
  • Лебедева А.Ю.
  • Яковлева Г.П.
  • Ермакова Е.Н.
RU2194602C2
СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ 2010
  • Кузнецов Виктор Валентинович
  • Мишнев Петр Александрович
  • Долгих Ольга Вениаминовна
  • Ефимов Семен Викторович
  • Балашов Сергей Александрович
  • Чистяков Алексей Николаевич
  • Головко Владимир Андреевич
  • Золотова Лариса Юрьевна
  • Струнина Людмила Михайловна
  • Шаталов Сергей Викторович
RU2463374C2

Иллюстрации к изобретению RU 2 033 464 C1

Реферат патента 1995 года КОНСТРУКЦИОННАЯ СТАЛЬ

Конструкционная сталь содержит, мас. %: углерод 0,09 - 0,16; кремний 0,20 - 0,40; марганец 0,8 - 1,20; хром 2,9 - 3,4; никель 0,8 - 1,2; молибден 0,2 - 0,3; ванадий 0,03 - 0,15; ниобий 0,02 - 0,07; титан 0,03 - 0,15; железо остальное. Сталь обладает повышенной штампуемостью при сохранении механических свойств. 2 табл.

Формула изобретения RU 2 033 464 C1

КОНСТРУКЦИОННАЯ СТАЛЬ, содержащая углерод, марганец, хром, никель, молибден и железо, отличающаяся тем, что она дополнительно содержит кремний, ванадий, ниобий и титан при следующем соотношении компонентов, мас.

Углерод 0,09 0,16
Кремний 0,20 0,40
Марганец 0,8 1,20
Хром 2,9 3,4
Никель 0,8 1,2
Молибден 0,2 0,3
Ванадий 0,03 0,15
Ниобий 0,02 0,07
Титан 0,03 0,15
Железо Остальное

Документы, цитированные в отчете о поиске Патент 1995 года RU2033464C1

Конструкционная сталь 1977
  • Клейнер Леонид Михайлович
  • Мурасов Фаиз Мугинович
  • Пиликина Людмила Дмитриевна
  • Крон Иван Александрович
  • Коган Лидия Израилевна
  • Энтин Рувим Иосифович
SU697597A1
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1

RU 2 033 464 C1

Авторы

Кузнецов В.А.

Клебанов Р.С.

Иванов Э.А.

Самодуров А.А.

Артемьев Г.С.

Сулацков В.И.

Даты

1995-04-20Публикация

1991-12-20Подача