СПОСОБ ИЗВЛЕЧЕНИЯ УРАНА ИЗ СЕРНОКИСЛЫХ РАСТВОРОВ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ Российский патент 1995 года по МПК C22B3/24 C22B60/02 B01D15/04 

Описание патента на изобретение RU2034056C1

Изобретение относится к гидрометаллургии, а именно к способам извлечения урана, и может быть использовано для концентрирования урана из растворов выщелачивания природного сырья.

Известен способ извлечения урана электролизом из щелочных растворов, согласно которому на раствор, содержащий уран, америций и кюрий, накладывают внешнее электрическое поле и получают на катоде очищенный от примесей уран.

Указанный способ неприемлем для извлечения урана из растворов с высокими концентрациями металлов, имеющих более низкие электрохимические эквиваленты (Al, Fe, Na и т.д.). При электролизе подобных растворов на катоде будет выделяться преимущественно и прежде всего именно этот ряд металлов.

Известен способ извлечения урана, включающий выщелачивание и сорбцию ионитами с последующей десорбцией в каскаде противоточных ионообменных колонн. По технической сущности, дости- гаемому положительному эффекту и количеству общих признаков этот способ является наиболее близким к предлагаемому и выбран в качестве прототипа.

Включение сорбционной технологии в процесс извлечения урана представляет возможность избирательного извлечения его из растворов выщелачивания, однако при этом возникает необходимость затрат реагентов на операцию десорбции ионита.

Недостатком прототипа является большой расход химических реагентов.

Целью изобретения является повышение производительности процесса путем снижения расхода реагентов на извлечение урана.

Указанная цель достигается тем, что в способе извлечения урана, включающем выщелачивание и сорбцию ионитами с последующей десорбций растворами кислот или щелочей в каскаде противоточных ионообменных колонн, десорбцию осуществляют с периодическим наложением электрического поля переменной продолжительности, причем продолжительность электровоздействия для каждой колонны каскада определяется условиями достижения равно- весного состояния в системе ионит-десорбирующий раствор и лежит в пределах между временем достижения состояния химического равновесия в колонне, следующей за ней.

На чертеже изображена схема, поясняющая предлагаемый способ сорбции.

Каскад десорбции состоит из четырех ионообменных колонн, связанных линиями коммуникаций и обеспечивающих противоточное движение ионита и десорбирующего раствора. Посредством электродов, установленных соосно с колоннами, и источника тока каскад объединен в электрическую цепь.

Ионит, насыщенный ураном, поступает последовательно из колонны 1 в колонну 4. Десорбирующий раствор движется противотоком из колонны 4 в колонну 1. Особенность подобной схемы десорбции заключается в том, что в заданных термодинамических условиях момент достижения равновесного состояния в системе ионит-десорбирующий раствор в каждой колонне каскада будет распределен во времени соответственно концентрациям реагирующих веществ и скорости десорбирующего раствора.

Колонны каскада загружаются ионитом, в колонну 4 подается десорбирующий раствор, начинается процесс десорбции.

В момент времени, соответствующий времени подхода потока десорбирующего раствора к верхней границе рабочего слоя ионита (десорбирующий раствор движется по колонне снизу вверх) колонны 4 и началу формирования в рабочем слое равновесного состояния, на электрод 5 указанной колонны подается электрический ток от источника тока 6 и производится электрообработка рабочего слоя колонны.

В следующий момент времени подхода десорбирующего раствора к верхней границе рабочего слоя колонны 3 электрообработка колонны 4 прекращается, а электрический ток подается на электрод 5 колонны 3. Далее подобным образом обрабатывается весь каскад колонн.

После десорбции ионита в колонне 1 производится передвижка ионита по колоннам, загрузка насыщенного ионита в колонну 1 и осуществляется следующий цикл десорбции.

Предлагаемый способ десорбции испытан в промышленных условиях. Для испытаний использовался сильноосновный анионит марки АМП. Десорбцию производили нитратно-сернокислотным способом при концентрации аммиачной селитры в десорбирующем растворе 55-60 г/л и концентрации серной кислоты 3-5 г/л.

Расход десорбирующего раствора по каскаду составлял 4 м3/ч. В каскаде десорбции были задействованы четыре колонны типа КДС диаметром 1,7 м, высотой 11 м, мощностью рабочего слоя ионита 9 м.

При испытаниях на электроды подавался электрический ток напряжением 36 В и силой 7,5 А. Линейная скорость потока десорбирующего раствора составляла по колоннам 3,5 м/ч.

В этих условиях период электрообработки составлял около 2,5 ч, а ряд временных интервалов электрообработок каскада колонн имел вид: 2,5-5-7,5-10 ч.

В соответствии с вышеизложенным, через 2,5 ч после начала цикла десорбции на электроды колонны 4 подавался электрический ток.

Через 5 ч после начала цикла электроды колонны 4 обесточивались и ток подавался на электроды колонны 3.

Через 7,5 ч после начала цикла отключались электроды колонны 3 и подавался ток на электроды колонны 2.

Через 10 ч после начала цикла отключались электроды колонны 2 и подавался ток на электроды колонны 1.

Через 12,5 ч цикл десорбции завершался, электроды колонны 1 отключались и производились передвижка ионита по каскаду к следующему циклу.

Испытания проводились сериями. Одна серия представляла собой последовательную реализацию двух 12,5-часовых циклов десорбции, первый из которых проводился по прототипу, а второй по предлагаемому способу. В процессе серий контролировался одинаковый уровень основных параметров десорбции: концентрации селитры и серной кислоты в десорбирующем растворе, концентрации урана на ионите, расход десорбирующего раствора. Данные представлены в табл.1.

Промежуток времени между сериями составлял 54 ч время, необходимое для полной замены объема ионита в каскаде.

Информация, характеризующая кинетику процесса десорбции по прототипу и предлагаемому способу, представлена в табл.2.

Технико-экономический эффект предлагаемого способа заключается в увеличении производительности технологической системы извлечения урана.

Из приведенных примеров следует, что при проведении процесса по предлагаемому способу средняя концентрация урана в десорбирующем растворе выше на 0,8 г/л (в среднем по трем примерам), чем при ведении процесса по прототипу. При заданном уровне производительности это позволяет существенно сократить расход химических реагентов на операцию десорбции урана.

Похожие патенты RU2034056C1

название год авторы номер документа
СПОСОБ ИОНООБМЕННОГО ИЗВЛЕЧЕНИЯ УРАНА ИЗ СЕРНОКИСЛЫХ РАСТВОРОВ И ПУЛЬП 2004
  • Шаталов В.В.
  • Федулов Ю.Н.
  • Пеганов В.А.
  • Огнев А.Н.
  • Голубцова И.Ю.
  • Ульянов В.В.
  • Соколова Н.П.
RU2259412C1
СПОСОБ ИЗВЛЕЧЕНИЯ КОНЦЕНТРАТА ПРИРОДНОГО УРАНА ИЗ СЕРНОКИСЛЫХ РАСТВОРОВ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Попонин Николай Анатольевич
  • Рычков Владимир Николаевич
  • Смирнов Алексей Леонидович
RU2489510C2
СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ ЦИАНИСТЫХ РАСТВОРОВ И ПУЛЬП 1991
  • Тимохин Алексей Сергеевич[Uz]
  • Федотов Геннадий Петрович[Uz]
RU2026389C1
ПИРИДИНИЕВЫЙ ИОНИТ ДЛЯ СОРБЦИИ УРАНА ИЗ РАСТВОРОВ И ПУЛЬП 2008
  • Балановский Николай Владимирович
  • Жарова Евгения Васильевна
  • Зорина Ада Ивановна
  • Ильинский Андрей Александрович
  • Молчанова Татьяна Викторовна
  • Сахарова Лариса Илларионовна
  • Шаталов Валентин Васильевич
  • Шереметьев Михаил Федорович
RU2385885C1
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ УГЛЕРОД-КРЕМНЕЗЕМИСТЫХ ЧЕРНОСЛАНЦЕВЫХ РУД 2011
  • Сарычев Геннадий Александрович
  • Денисенко Александр Петрович
  • Зацепина Мария Сергеевна
  • Деньгинова Светлана Юрьевна
  • Татаринов Александр Сергеевич
  • Смирнов Константин Михайлович
  • Пеганов Владимир Алексеевич
RU2477327C1
СПОСОБ ИЗВЛЕЧЕНИЯ РЕНИЯ ИЗ УРАНСОДЕРЖАЩИХ РАСТВОРОВ 2012
  • Трошкина Ирина Дмитриевна
  • Шиляев Андрей Владимирович
  • Буторина Евгения Викторовна
  • Кременецкий Александр Александрович
RU2523892C2
СПОСОБ ИЗВЛЕЧЕНИЯ СКАНДИЯ ИЗ СКАНДИЙСОДЕРЖАЩЕГО МАТЕРИАЛА 2014
  • Нечаев Андрей Валерьевич
  • Козырев Александр Борисович
  • Сибилев Александр Сергеевич
  • Смирнов Александр Всеволодович
  • Петракова Ольга Викторовна
  • Горбачев Сергей Николаевич
  • Панов Андрей Владимирович
RU2582425C1
СПОСОБ ОСУЩЕСТВЛЕНИЯ МАССООБМЕННЫХ ПРОЦЕССОВ 1993
  • Уткина Л.В.
  • Майоров А.А.
  • Тарасов В.В.
RU2056931C1
СПОСОБ СОРБЦИОННОГО ИЗВЛЕЧЕНИЯ УРАНА ИЗ КРЕМНИЙСОДЕРЖАЩИХ РАСТВОРОВ И ПУЛЬП 1999
  • Шаталов В.В.
  • Водолазов Л.И.
  • Пеганов В.А.
  • Молчанова Т.В.
  • Фастова Л.Н.
  • Ларин В.К.
  • Литвиненко В.Г.
  • Колов Г.Н.
RU2159216C1
СПОСОБ СОРБЦИОННОГО ИЗВЛЕЧЕНИЯ УРАНА ИЗ СЕРНОКИСЛЫХ РАСТВОРОВ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ, ХАРАКТЕРИЗУЮЩИХСЯ НИЗКОЙ ТЕМПЕРАТУРОЙ 2022
  • Вацура Фёдор Ярославович
  • Головко Валерий Валерьевич
  • Головко Валерий Васильевич
  • Красноперова Юлия Германовна
  • Михайлов Анатолий Николаевич
  • Савельев Дмитрий Сергеевич
  • Трошкина Ирина Дмитриевна
RU2797892C1

Иллюстрации к изобретению RU 2 034 056 C1

Реферат патента 1995 года СПОСОБ ИЗВЛЕЧЕНИЯ УРАНА ИЗ СЕРНОКИСЛЫХ РАСТВОРОВ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ

Использование: для концентрирования урана из растворов выщелачивания природного сырья. Сущность: уран из сернокислых растворов подземного выщелачивания сорбируют на сильноосновный анионит АМП, десорбируют сернокислым раствором аммиачной селитры в каскаде противоточных ионообменных колонн с осуществлением электровоздействия на ионит последовательно в каждой из ионообменных колонн каскада десорбций, продолжительность электровоздействия устанавливают по времени достижения состояния химического равновесия в обрабатываемой колонне и следующей за ней в каскаде десорбций. 1 ил., 2 табл.

Формула изобретения RU 2 034 056 C1

1. СПОСОБ ИЗВЛЕЧЕНИЯ УРАНА ИЗ СЕРНОКИСЛЫХ РАСТВОРОВ ПОДЗЕМНОГО ВЫЩЕЛАЧИВАНИЯ, включающий их сорбцию на сильноосновной анионит АМП и последующую десорбцию сернокислым раствором аммиачной селитры в каскаде противоточных ионообменных колонн, отличающийся тем, что, с целью повышения эффективности процессов извлечения и снижения расхода реагентов, десорбцию осуществляют при электровоздействии на ионит последовательно в каждой из ионообменных колонн каскада. 2. Способ по п.1, отличающийся тем, что продолжительность электровоздействия устанавливают по времени достижения состояния химического равновесия в обрабатываемой колонне и следующей за ней в каскаде десорбции.

Документы, цитированные в отчете о поиске Патент 1995 года RU2034056C1

Полянский Н.Г
и Горбунов Г.В
Методы исследования ионитов
-М.: Химия, 1976, с.45.

RU 2 034 056 C1

Авторы

Тимохин Алексей Сергеевич[Kz]

Федотов Геннадий Петрович[Kz]

Акопян Юрий Михайлович[Kz]

Даты

1995-04-30Публикация

1990-08-31Подача