СПОСОБ ПОЛУЧЕНИЯ НИЗКОМОЛЕКУЛЯРНОГО ДЕКСТРАНА Российский патент 1995 года по МПК C08B37/02 

Описание патента на изобретение RU2039754C1

Изобретение относится к области химии полимеров, в частности к химии полисахаридов.

Полисахариды широко используют в пищевой и фармакологической промышленности. К числу таких полисахаридов относится декстран, представляющий собой α-1,6-глюкан, получаемый микробиологическим синтезом из сахарозы. Продукт микробиологического синтеза нативный декстран является высокомолекулярным полимером глюкозы с молекулярной массой МW (25-30) ˙106, имеет широкое молекулярно-массовое распределение (ММР) полидисперсность МW/MN достигает значений 100 и более.

Водные растворы нативного декстрана представляют собой высоковязкие жидкости, значения характеристической вязкости составляет 1,4-2,3 дл/г. Поэтому использование нативного декстрана без предварительной деструкции в фармакологических препаратах, в частности в плазмозаменителях крови, не представляется возможным.

В производстве плазмозаменителей крови используют низкомолекулярный декстран (НМД) с МW 30000-70000. Для этого нативный декстран подвергают какому-либо виду деструкции: кислотному или щелочному гидролизу, ультразвуковой или термической деструкции. Низкомолекулярный декстран, используемый при производстве плазмозаменителей крови, должен соответствовать ряду требований:
мол.м. 30000-70000;
узкое молекулярно-массовое распределение, чтобы исключить содержание нежелательных низкомолекулярных и высокомолекулярных фракций;
характеристическая вязкость водного раствора не должна превышать значения 0,28-0,30.

Известен способ получения низкомолекулярного декстрана путем кислотного гидролиза нативного декстрана [1]
По известному способу деструкция нативного декстрана осуществляется путем расщепления молекул соляной или серой кислотой при нагревании раствора, после чего для выделения целевого продукта, имеющего необходимое ММР, низкомолекулярный декстран подвергают фракционированию спиртовым осаждением для удаления нежелательных высоко- и низкомолекулярных фракций полисахарида. При этом теряется около 30% декстрана, т.е. выход конечного продукта составляет примерно 70% Установлено, что полидисперсность целевого продукта, например, при производстве плазмозаменителя полиглюкин имеет значение МW/MN 2,3.

При этом способе не происходит модификация декстрана, не образуются новые функциональные группы в гликозидных звеньях низкомолекулярного декстрана.

Наиболее близким техническим решением является способ получения низкомолекулярного декстрана путем облучения сухого нативного декстрана электронами высоких энергий [2] По указанному способу раствор нативного декстрана предварительно высушивают, а затем порошок в присутствии щелочи облучают электронами высоких энергий.

Отсутствие полной гомогенности декстрана и щелочи приводит к неравномерности процесса деструкции, а это приводит к тому, что конечный продукт низкомолекулярный декстран имеет очень широкое молекулярно-массовое распределение, полидисперсность MW/MN превышает 10. Вследствие этого облученный ускоренными электронами декстран подвергают спиртовому фракционированию. При этом теряется около 30-40% декстрана, т.е. выход продукта, пригодного для получения плазмозаменителя крови составляет 60-70% Отсутствуют сведения о модификации низкомолекулярного декстрана. Продукту, получаемому по этому способу, присуща интенсивная желто-коричневая окраска, которую снижают путем дополнительной обработки раствора низкомолекулярного декстрана на сорбентах при нагревании. По указанному способу для получения низкомолекулярного декстрана с мол.м. 50000 используют дозу облучения 800 кГр.

Изобретение решает следующие задачи:
снижение интегральной дозы облучения, необходимой для достижения мол.м. декстрана 30000-70000, в 3,5-4,5 раза (в пересчете на сухой декстран);
получение низкомолекулярного декстрана с молекулярно-массовым распределением, соответствующим требованиям, предъявляемым к плазмозаменителям крови, без дополнительного фракционирования, т.е. имеющим полидисперсность MW/MN не более 2,0;
увеличение выхода конечного продукта до 100%
улучшение качества конечного продукта за счет модификации декстрана путем включения в ходе радиационно-инициируемой деструкции в молекулы низкомолекулярного декстрана новых функциональных групп (С О, СООН) с относительным содержанием модифицированных гликозидных звеньев 4,2-8,4%
улучшение качества конечного продукта за счет исключения его окрашенности (цветности);
обеспечение стерильности конечного продукта водного раствора низкомолекулярного декстрана, что является важным аспектом при производстве плазмозаменителей крови.

Поставленные задачи решают тем, что в способе получения деструктурированного декстрана путем воздействия на высокомолекулярный декстран ионизирующим излучением, воздействию подвергают водный раствор, содержащий 5-11 г/дл нативного высокомолекулярного декстрана и 0,02-0,22 мас. перекиси водорода, имеющий рН 9-12, и воздействие осуществляют γ-лучами дозой 7,6-28,2 кГр при 10-50оС.

Граничные значения содержания перекиси водорода в облучаемых растворах выбраны такими, чтобы процесс радиационной деструкции можно было реализовать при минимальной дозе гамма-облучения, причем в ходе облучения вся перекись водорода полностью вступала в реакцию и в конечном продукте отсутствовала. Нижний предел концентрации Н2О2 выбран равным 0,05 мас. поскольку при более низких концентрациях Н2О2 эффект снижения дозы сравним с экспериментальной погрешностью определения молекулярных масс и дозы облучения. Верхний предел концентрации Н2О2 выбран равным 0,22 мас. поскольку дополнительное увеличение концентрации перекиси водорода в облучаемых водных растворах декстрана не приводит к дальнейшему снижению дозы облучения.

Растворы низкомолекулярного декстрана (НМД), получаемые по предлагаемому способу, не требуют последующей очистки и могут непосредственно использоваться как основа плазмозаменителя крови.

Температурный интервал процесса (10-50оС) выбран таким образом, чтобы, с одной стороны, вязкость раствора нативного декстрана была не слишком высока, с другой стороны, не происходило резкого термического разложения перекиси водорода.

Интервал рН 9-12 выбран таким, чтобы после радиолиза растворы имели физиологически приемлемый рН 4,0-7,0, который должны иметь плазмозаменители крови.

Приведенные в примерах НМД имеют молекулярные массы, лежащие в интервале MW 30000-70000, а концентрации в интервале 5-11 г/дл, что обусловлено требованиями к плазмозаменителям крови гемодинамического и реологического действия (полиглюкин, макродекс, реополиглюкин, реомакродекс).

При воздействии γ-излучения на водные растворы нативного декстрана превалирует косвенное действие радиации, т.е. происходит радиолиз воды с выходом частиц, наиболее реакционноспособными из которых являются ОН-радикал, гидратированный электрон , Н-радикал. Гидратированный электрон практически не взаимодействует с декстраном, но с большой вероятностью вступает в реакцию с Н2О2, приводя к резкому увеличению выхода ОН-радикалов, тем самым, к увеличению скорости деструкции декстрана.

П р и м е р 1. В аппарат помещают 1000 л раствора нативного высокомолекулярного декстрана концентрации 6 г/л при 25оС, добавлением 3 л 2 н.NaOH доводят рН до 10,8-11,2, добавляют 3 л 34 мас. перекиси водорода до концентрации Н2О2 0,12 мас. раствор перемешивают и направляют на облучение в γ-установку змеевикового типа. Мощность дозы γ-облучателя составляет 3,0 Гр/c. Раствор облучают интегральной дозой 9,5 кГр.

После облучения получают бесцветный раствор низкомолекулярного декстрана концентрации 5,98 г/дл с мол.м. 68200, относительной вязкостью 2,78, характеристической вязкостью 0,181 дл/г, рН 4,6, остаточная перекись водорода в растворе отсутствует. Полидисперсность, характеризующая ММР, низкомолекулярного декстрана, составляет 1,92, что позволяет использовать раствор низкомолекулярного декстрана без дополнительного фракционирования, т.е. выход конечного продукта составляет 100%
Низкомолекулярный декстран модифицирован, его молекулы имеют следующую химическую структуру

где k 426, l 6, m 12.

Относительное содержание гликозидных звеньев с карбонильными С 0-группами, составляет 1,36% а гликозидных звеньев с карбоксильными СООН-группами 2,72% т.е. общее содержание модифицированных гликозидных звеньев составляет 4,08%
П р и м е р ы 2-16 выполняют аналогично примеру 1 при других параметрах. Результаты представлены в таблице.

Все растворы низкомолекулярного декстрана, полученные в примерах 1-16, были стерильны и не имели цветности.

Похожие патенты RU2039754C1

название год авторы номер документа
ПЛАЗМОЗАМЕЩАЮЩЕЕ СРЕДСТВО, КОРРЕКТИРУЮЩЕЕ ГЕМОДИНАМИЧЕСКИЕ НАРУШЕНИЯ, - НЕОРОНДЕКС 1992
  • Гапанович В.Н.
  • Петров П.Т.
  • Царенков В.М.
  • Иванов Е.П.
  • Лапковский М.П.
  • Тюрин В.И.
  • Забелло Т.Н.
RU2043108C1
СПОСОБ ПОЛУЧЕНИЯ НИЗКОМОЛЕКУЛЯРНОГО ХИТОЗАНА 2010
  • Купреев Николай Иосифович
  • Быковский Дмитрий Владимирович
  • Кузнецов Вячеслав Алексеевич
  • Ваел Шехта Матвалли Эльсайед Елазаб
RU2417088C1
НОВЫЕ БИОПОЛИМЕРЫ, ПОЛУЧЕННЫЕ ОБЛУЧЕНИЕМ В ТВЕРДОЙ ФАЗЕ В АТМОСФЕРЕ НЕНАСЫЩЕННЫХ ГАЗОВ 2002
  • Филлипс Глин Оуэн
  • Дю Плесси Тиаарт Андриес
  • Ал-Ассаф Сапхван
  • Уилльямс Питер Энтони
RU2280038C2
СПОСОБ ПОЛУЧЕНИЯ НИЗКОМОЛЕКУЛЯРНОГО ВОДОРАСТВОРИМОГО ХИТИНА В ЭЛЕКТРОННО-ПУЧКОВОЙ ПЛАЗМЕ 2014
  • Васильева Татьяна Михайловна
  • Васильев Михаил Николаевич
  • Лопатин Сергей Александрович
  • Варламов Валерий Петрович
RU2595162C2
КОМПЛЕКСНОЕ КОСМЕТИЧЕСКОЕ СРЕДСТВО 2013
  • Бурцева Татьяна Ивановна
  • Рахматуллин Рамиль Рафаилевич
  • Бурлуцкая Ольга Ивановна
  • Адельшин Абай Ижбулатович
RU2524663C1
СПОСОБ ПОЛУЧЕНИЯ ВОДОРАСТВОРИМЫХ ОЛИГОМЕРНЫХ ГОМОЛОГОВ ХИТОЗАНА В ГЕТЕРОГЕННОЙ СИСТЕМЕ 2011
  • Сливкин Алексей Иванович
  • Лапенко Виктор Лавреньевич
  • Сливкин Денис Алексеевич
  • Быков Валерий Алексеевич
  • Бычук Александр Иванович
RU2479590C1
СВЕРХРАЗВЕТВЛЕННЫЙ АМИЛОПЕКТИН ДЛЯ ПРИМЕНЕНИЯ В СПОСОБАХ ХИРУРГИЧЕСКОГО ИЛИ ТЕРАПЕВТИЧЕСКОГО ЛЕЧЕНИЯ МЛЕКОПИТАЮЩИХ, ИЛИ В ДИАГНОСТИЧЕСКИХ МЕТОДАХ, ОСОБЕННО ДЛЯ ПРИМЕНЕНИЯ В КАЧЕСТВЕ ОБЪЕМНОГО ПЛАЗМОЗАМЕНИТЕЛЯ 2002
  • Зоммермейер Клаус
RU2303984C2
Способ радиационного сшивания аморфного полистирола 1987
  • Ломоносова Нина Васильевна
  • Добрецов Сергей Леонтьевич
SU1578022A1
СПОСОБ ПОЛУЧЕНИЯ ДЕКСТРАНА 1993
  • Донецкий И.А.
  • Персанова Л.В.
  • Акимов Д.А.
  • Суханов Ю.С.
  • Бодина З.К.
  • Новохатский А.С.
  • Хлябич Г.Н.
RU2093577C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОМОЛЕКУЛЯРНЫХ ПОЛИВИНИЛПИРРОЛИДОНА И СОПОЛИМЕРА N-ВИНИЛПИРРОЛИДОНА И N-ВИНИЛИМИДАЗОЛА 2017
  • Лелюх Алексей Иванович
  • Головкин Вадим Гаевич
RU2652120C1

Иллюстрации к изобретению RU 2 039 754 C1

Реферат патента 1995 года СПОСОБ ПОЛУЧЕНИЯ НИЗКОМОЛЕКУЛЯРНОГО ДЕКСТРАНА

Использование: в медицине и фармации для получения плазмозаменителей крови. Сущность: водный раствор, содержащий 5-11 г/дл нативного высокомолекулярного декстрана и 0,05 0,22 мас. перекиси водорода, имеющий pH 9 12, подвергают воздействию γ-лучей дозой 7,6 28,2 кГр при 10-50°С. 1 табл.

Формула изобретения RU 2 039 754 C1

СПОСОБ ПОЛУЧЕНИЯ НИЗКОМОЛЕКУЛЯРНОГО ДЕКСТРАНА путем воздействия на высокомолекулярный декстран ионизирующим излучением, отличающийся тем, что воздействию подвергают водный раствор, содержащий 5 11 г/дл нативного высокомолекулярного декстрана и 0,05 0,22 мас. перекиси водорода, имеющий исходный pH 9 12, и воздействие осуществляют γ -лучами дозой 7,6 - 28,2 кГр при 10 50oС.

Документы, цитированные в отчете о поиске Патент 1995 года RU2039754C1

Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Патент США N 2867571, кл
Ротационный фильтр-пресс для отжатия торфяной массы, подвергшейся коагулированию, и т.п. работ 1924
  • Кирпичников В.Д.
  • Классон Р.Э.
  • Стадников Г.Л.
SU204A1

RU 2 039 754 C1

Авторы

Петров Петр Тимофеевич[By]

Гапанович Владимир Николаевич[By]

Царенков Валерий Минович[By]

Заборонок Валерий Ульянович[By]

Лапковский Михаил Павлович[By]

Тюрин Виталий Иванович[By]

Забелло Татьяна Николаевна[By]

Даты

1995-07-20Публикация

1992-07-31Подача