АМОРФНЫЙ МАГНИТОМЯГКИЙ СПЛАВ Российский патент 1995 года по МПК H01F1/153 C22C38/32 C22C45/02 

Описание патента на изобретение RU2044352C1

Изобретение относится к металлургии и может быть использовано в производстве изделий из магнитомягких сплавов с линейной петлей гистерезиса, в частности в дросселях и трансформаторах.

Для изготовления сердечников с линейной петлей гистерезиса используются традиционные кристаллические материалы: ферриты, электротехнические стали, пермаллои. Линейная форма петли гистерезиса достигается созданием в магнитопроводе немагнитного зазора путем прецизионной резки [1]
Недостатками указанных сердечников являются высокая трудоемкость операции прецизионной резки и повышенные поля рассеяния в зазоре.

Наиболее близким по составу и техническим параметрам к изобретению является аморфный сплав [2] состав которого описывается формулой: FeaSibBc, где a, b, c атомные проценты в пределах а 75-78,5; b4-10,5; с 11-21; сумма a+b+c 100.

Недостатками данного сплава являются:
достижение линейной формы петли гистерезиса после отжига только в поперечном магнитном поле, что усложняет технологию и оборудование для термообработки;
недостаточна величина поля выхода в насыщение параметра, определяющего эффективность работы ряда электромагнитных устройств, например дросселей.

Изобретение направлено на достижение линейной формы петли гистерезиса магнитных элементов после термообработки без приложения магнитного поля и получение повышенных полей выхода в насыщение путем дополнительного введения в аморфный сплав системы Fe-Si-B элементов Zn и/или Al при следующем соотношении компонентов, ат. B 11-16 Si 4-8 Zn и/или Al 0,5-5 Fe Остальное
Дополнительное введение Zn и/или Al способствует наведению поперечной анизотропии.

Введение Zn и/или Al в отдельности или суммарно выше 5% нецелеосообразно по следующим причинам:
повышается хрупкость и дефектность лент в процессе их изготовления; не происходит дальнейшего заметного роста поля выхода в насыщение; снижается индукция насыщения.

При уменьшении содержания Zn и/или Al менее 0,5% не достигается линейности петли гистерезиса при отжиге без поля и снижается поле выхода в насыщение.

Указанные количества металлоидов В и Si в сочетании с добавками Zn и/или Al обеспечивают высокую технологичность производства лент в аморфном состоянии.

П р и м е р. Экспериментальные образцы сплавов (см. таблицу) получали в виде лент толщиной 15-20 мкм, шириной 10 мм методом закалки расплава на медном вращающемся диске. Из полученных образцов лент изготавливали кольцевые магнитопроводы со средним диаметром 0,02 м и массой 2 г, на которых после отжига испытывались магнитные свойства: В2 индукция в поле 2 Э (16 А/м); В10 индукция в поле 10 Э (79,6 А/м); Кп В210 коэффициент прямоугольности, равный отношению остаточной индукции к индукции в поле 10 Э; кривая намагничивания.

Измерения проводились по ГОСТ 8.377-80. Поле выхода в насыщение На определялось известным графическим методом по кривой намагничивания, как точка пересечения двух касательных к ней, одна из которых проходит через начало координат, а другая через точку, соответствующую индукции технического насыщения.

Отжиг магнитопроводов проводили без приложения магнитного поля в воздушной среде при температурах, необходимых для достижения оптимальных магнитных свойств (325-400оС) в течение 0,5 ч с последующим охлаждением со скоростью 10оС/мин.

Для сравнения были изготовлены магнитопроводы из сплава Fe-Si-B без легирующих добавок и отожжены с приложением магнитного поля и без него.

Результаты испытаний приведены в таблице.

Как видно из приведенных данных, дополнительное введение в сплав присадок Al и/или Zn в количествах 0,5-5% позволяет после отжига без приложения магнитного поля получать устойчивую линейную петлю гистерезиса (Кп 0,08-0,20) и высокие поля выхода в насыщение (На до 90 Э), что значительно превышает аналогичные параметры сплава прототипа не только после его отжига без поля, но и в поле.

Использование данного изобретения позволит: получить магнитомягкий сплав с устойчивой линейной петлей гистерезиса (низким значением коэффициента прямоугольности Кп < 0,2) и высоким значением поля выхода в насыщение (На до 90 Э) и создать электромагнитные устройства, например, дроссели с высокими техническими параметрами; упростить оборудование и снизить трудоемкость термической обработки за счет исключения магнитного поля при отжиге.

Похожие патенты RU2044352C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НАНОКРИСТАЛЛИЧЕСКОГО ПОРОШКА 2012
  • Мазеева Алина Константиновна
  • Геращенкова Елена Юрьевна
  • Самоделкин Евгений Александрович
  • Фармаковский Борис Владимирович
  • Кузнецов Павел Алексеевич
  • Рамалданова Анастасия Анверовна
RU2530076C2
МАГНИТОПРОВОД 1998
  • Стародубцев Ю.Н.
  • Кейлин В.И.
  • Белозеров В.Я.
RU2149473C1
МАГНИТОПРОВОД 2000
  • Стародубцев Ю.Н.
  • Белозеров В.Я.
  • Зеленин В.А.
RU2190275C2
МАГНИТОПРОВОД 1996
  • Кейлин В.И.
  • Стародубцев Ю.Н.
  • Зеленин В.А.
  • Белозеров В.Я.
  • Хлопунов С.И.
RU2115968C1
СПОСОБ ИЗГОТОВЛЕНИЯ МАГНИТНОГО СЕРДЕЧНИКА 2009
  • Оленина Элеонора Леонтьевна
  • Аристов Василий Дмитриевич
  • Лабунский Александр Федорович
  • Ершова Татьяна Михайловна
  • Оленин Александр Михайлович
  • Пигарев Юрий Николаевич
  • Осипова Наталья Игоревна
  • Ромаев Владимир Николаевич
RU2410787C1
АМОРФНЫЙ МАГНИТНЫЙ СПЛАВ НА ОСНОВЕ СИСТЕМЫ ЖЕЛЕЗО-КРЕМНИЙ 2022
  • Лобанов Михаил Львович
  • Никульченков Николай Николаевич
  • Юровских Артем Сергеевич
  • Зорина Мария Александровна
  • Векслер Михаил Юрьевич
RU2791679C1
МАГНИТНЫЙ СПЛАВ НА ОСНОВЕ КОБАЛЬТА 2000
  • Стародубцев Ю.Н.
  • Белозеров В.Я.
RU2187573C2
СПОСОБ ОБРАБОТКИ ИЗДЕЛИЙ ИЗ МАГНИТОМЯГКИХ АМОРФНЫХ СПЛАВОВ 1999
  • Зайченко С.Г.
  • Глезер А.М.
  • Ганьшина Е.А.
  • Перов Н.С.
  • Качалов В.М.
RU2154869C1
Магнитомягкий аморфный материал на основе Fe-Ni в виде ленты 2022
  • Милькова Дария Александровна
  • Занаева Эржена Нимаевна
  • Базлов Андрей Игоревич
  • Чурюмов Александр Юрьевич
  • Иноуэ Акихиса
  • Медведева Светлана Вячеславовна
  • Мамзурина Ольга Игоревна
RU2794652C1
МАГНИТОПРОВОД, СПОСОБ ИЗГОТОВЛЕНИЯ ТАКОГО МАГНИТОПРОВОДА, ОБЛАСТИ ПРИМЕНЕНИЯ ТАКОГО МАГНИТОПРОВОДА, В ЧАСТНОСТИ, В ТРАНСФОРМАТОРАХ ТОКА И СИНФАЗНЫХ ДРОССЕЛЯХ, А ТАКЖЕ СПЛАВЫ И ЛЕНТЫ ДЛЯ ИЗГОТОВЛЕНИЯ ТАКОГО МАГНИТОПРОВОДА 2004
  • Херцер Гизельхер
  • Отте Детлеф
RU2351031C2

Иллюстрации к изобретению RU 2 044 352 C1

Реферат патента 1995 года АМОРФНЫЙ МАГНИТОМЯГКИЙ СПЛАВ

Использование: в производстве изделий из магнитомягких сплавов с линейной петлей гистерезиса, в дросселях и трансформаторах. Сущность изобретения: аморфный сплав системы Fe Si B дополнительно содержит Zn и/или Al при следующем соотношении компонентов, ат. B 11 16; Si 4 -8; Zn и/или Al 0,5 5; Fe
остальное. Получают сплав с линейной петлей гистерезиса Kп < 0,2 и повышенными полями выхода в насыщение до 90 Э. 1 табл.

Формула изобретения RU 2 044 352 C1

АМОРФНЫЙ МАГНИТОМЯГКИЙ СПЛАВ на основе железа, содержащий бор и кремний, отличающийся тем, что сплав дополнительно содержит цинк и/или алюминий при следующем соотношении компонентов, ат.

Бор 11 16
Кремний 4 8
Цинк и/или алюминий 0,5 5,0
Железо Остальное

Документы, цитированные в отчете о поиске Патент 1995 года RU2044352C1

Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Машина для упаковки чая и тому подобных сыпучих материалов 1938
  • Венчунас Л.В.
SU55327A1
Машина для добывания торфа и т.п. 1922
  • Панкратов(-А?) В.И.
  • Панкратов(-А?) И.И.
  • Панкратов(-А?) И.С.
SU22A1
Устройство для видения на расстоянии 1915
  • Горин Е.Е.
SU1982A1

RU 2 044 352 C1

Авторы

Пащенко Ф.Е.

Чернов В.С.

Иванов О.Г.

Даты

1995-09-20Публикация

1993-10-29Подача