СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ ПОЛИМЕРНОЙ СМЕСИ Российский патент 1995 года по МПК C08K3/32 

Описание патента на изобретение RU2048488C1

Изобретение относится к области композитов и может быть использовано в качестве конструкционного материала в технике и медицине.

Известен способ получения композиционных материалов на основе смеси органических полимеров. Данные компози- ционные материалы обладают невысокими упругими характеристиками и горючестью [1]
Наиболее близким к заявляемому способу получения композиционных материалов является способ изготовления смесей, содержащих полимерное связующее и жесткий дисперсный наполнитель [2]
Использование для переработки таких смесей наиболее производительного экструзионного метода не позволяет получить высоконаполненные композиции из-за сильного увеличения вязкости перерабатываемой смеси при небольших степенях наполнения (вязкость >>105 П).

Технической задачей изобретения является получение смеси в любых соотношениях полимеров, что позволяет варьировать их упругие механические характеристики.

Поставленная задача достигается тем, что в способе получения композиционного материала на основе полимерной смеси, включающем смешение органического и неорганического полимера и последующее формование изделия из смеси, в качестве неорганического полимера используют ультрафосфаты в количестве 0,1-0,9 мас.ч. на 1 мас.ч. смеси, которую подвергают термообработке при 180-300оС с последующим ее экструдированием или прессованием.

Процесс смешения в экструдере проводят при температуре размягчения наиболее высокоплавкой компоненты при 180-300оС.

Выбранный диапазон температур объясняется тем, что при t<180оС не происходит размягчения ультрафосфата, а при t>300оС наблюдается разложение органической компоненты. Далее смесь подвергают литью.

Смесь органических и неорганических полимеров может быть переработана и другим способом. А именно нанесением смеси порошкообразных компонентов на матрицу с последующим нагревом до температуры размягчения наиболее высокоплавкой компоненты и прессованием.

Преимуществом способа является лишь незначительное увеличение вязкости экструдируемой смеси при смешении органического и неорганического полимеров с близкими температурами размягчения, что позволяет получить их смеси в любом соотношении.

В данном способе могут быть применены в качестве исходных слагаемых органические полимеры полиэтилен высокой плотности, сверхвысокомолекулярный полиэтилен, полипропилен, которые обладают общим свойством (температура их переработки около 180-220оС), а также поликарбонат, полистирол, полиамид.

В качестве второй основной компоненты полимер-полимерной смеси в изобретении используются ультрафосфаты, обладающие следующими характеристиками:
низкой температурой размягчения 200-300оС;
высокой термостойкостью при температурах переработки. Начало потери веса при нагреве используемых ультрафосфатов более 650оС;
вязкостью, близкой к вязкости органического полимера (полиэтилена). Р= 21,6 кг.

Эти преимущества ультрафосфатов позволяют получать смесевые композиции при любых соотношениях ее составляющих с использованием высокотермостойкой и стабильной к окислению компонентой.

В качестве неорганических полимеров использованы оксидные и оксифторидные ультрафосфаты со следующими основными компонентами химического состава:
1) Р2О5В2О3Ме2О (Li2O K2O Na2O) MeO (MgO BaO ZnO CaO)
2) P2O5B2O3MeF (LiF NaF KF) MeF2 (MgF2 CaF2)
Ультафосфаты получают выпариванием соответствующих водных растворов неорганических оксидов при 150-350оС с последующей термообработкой при t ≈ 800оС.

П р и м е р 1. В экструдер загружают 50 г порошкообразного ультрафосфата следующего химического состава, 70 Р2О5; 5 В2О3; 10 Li2O; 10 Na2O; 5 MgО. Температура стеклования ультрафосфата Тg=165оС. Добавляют 50 г гранулированного полиэтилена высокой плотности с температурой плавления Тпл.=132оС и смешивают при температуре t= 190оС. Массовое соотношение неорганической и органической компоненты 0,5:0,5. Затем расплав подвергают экстpудированию. Вязкость расплава составляет 550 П.

Композиционный материал можно получить прессованием: смесь порошкообразного ультрафосфата того же химического состава с температурой стеклования Тg= 165оС в количестве 50 г и гранулированного полиэтилена высокой плотности с температурой плавления Тпл. 132оС в количестве 50 г после тщательного перемешивания распределяют на матрице и затем нагревают до 190оС, после чего смесь прессуют.

П р и м е р 2. В экструдер загружают 25 г порошкообразного ультрафосфата следующего химического состава, 70 Р2О5; 5 В2О3; 10 Li2O; 10 NaF; 5 MgF2. Температура стеклования ультрафосфата Тg=176оС. Добавляют 75 г гранулированного сверхвысокомолекулярного полиэтилена с температурой плавления Тпл.= 136оС и перемешивают при t=210оС 5 мин. Массовое соотношение неорганического и органического полимеров 0,25:0,75. Затем расплав подвергают литью. Вязкость расплава составляет 450 П. Этот же композит можно получить прессованием, распределив предварительно смесь порошкообразного ультрафосфата того же химического состава и гранулированного сверхвысокомолекулярного полиэтилена в массовом соотношении неорганического и органического полимеров, равном 1:3, на матрице, которую затем нагревают до 210оС, после чего прессуют.

П р и м е р 3. В экструдер загружают 75 г порошкообразного ультрафосфата следующего химического состава, 70 Р2О5; 5 В2О3; 10 Li2O; 10 Na2О; 5 ВаО. Температура стеклования ультрафосфата Тg=170оС. Добавляют 25 г гранулированного полипропилена с температурой плавления Тпл.=180оС и перемешивают при t= 230оС 5 мин. Затем расплав подвергают литью. Вязкость расплава составляет 350 П.

Прессование композита такого же состава производят следующим образом: смесь порошкообразного ультрафосфата того же химического состава с температурой стеклования Тg=170оС и гранулированного полипропилена с температурой плавления Тпл.= 180оС в массовом соотношении 3:1 тщательно перемешивают и наносят на матрицу, которую нагревают до 230оС, после чего смесь прессуют.

Механические свойства композитов на основе смесей ультрафосфатов и органических полимеров приведены в таблице.

Похожие патенты RU2048488C1

название год авторы номер документа
Способ получения трехмерных изделий сложной формы со структурой нативной трабекулярной кости на основе высоковязкого полимера 2019
  • Булыгина Инна Николаевна
  • Сенатов Фёдор Святославович
  • Калошкин Сергей Дмитриевич
  • Максимкин Алексей Валентинович
  • Анисимова Наталья Юрьевна
  • Киселевский Михаил Валентинович
RU2708589C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО ПОКРЫТИЯ НА ПОВЕРХНОСТИ СТРОИТЕЛЬНЫХ ИЗДЕЛИЙ 1992
  • Шаулов А.Ю.
  • Шалумов Б.З.
  • Поляк Л.Г.
RU2046719C1
СТЕКЛО 1991
  • Степанов С.А.
  • Урусовская И.Б.
  • Гончарук В.К.
  • Меркулов Е.Б.
RU2017708C1
МАТЕРИАЛ ДЛЯ ЗАЩИТНЫХ ПОКРЫТИЙ СТРОИТЕЛЬНЫХ СООРУЖЕНИЙ И КОНСТРУКЦИЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1996
  • Крючков А.Н.
  • Кнунянц М.И.
  • Бурбело А.А.
  • Гончарук Г.П.
RU2129133C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ ГРАНУЛИРОВАННЫХ ПОЛИМЕРНЫХ МАТЕРИАЛОВ (ВАРИАНТЫ) 2012
  • Байгалиев Борис Ергазович
  • Темникова Светлана Владимировна
  • Черноглазова Алевтина Валентиновна
  • Биктимиров Динар Рифкатович
RU2527049C2
СМАЗОЧНАЯ КОМПОЗИЦИЯ 2015
  • Краснов Александр Петрович
  • Афоничева Ольга Владимировна
  • Буяев Дмитрий Игоревич
  • Митин Валентин Геннадиевич
  • Наумкин Александр Васильевич
  • Соловьева Вера Александровна
  • Юдин Алексей Сергеевич
  • Горошков Михаил Владимирович
RU2596820C1
КОМПОЗИЦИЯ И ЛЕКАРСТВЕННАЯ ФОРМА, СОДЕРЖАЩИЕ ТВЕРДУЮ ИЛИ ПОЛУТВЕРДУЮ МАТРИЦУ 2006
  • Розенберг Йорг
  • Мэгерляйн Маркус
  • Брайтенбах Йорг
RU2423997C9
СПОСОБ ПОЛУЧЕНИЯ БИТУМПОЛИМЕРНЫХ МАТЕРИАЛОВ 2011
  • Дезорцев Сергей Владиславович
  • Доломатов Михаил Юрьевич
  • Курбанова Эльмира Дидаровна
  • Ионов Виктор Иванович
RU2468050C1
СПОСОБ ПОЛУЧЕНИЯ ВСПЕНЕННОГО ПОЛИВИНИЛХЛОРИДНОГО МАТЕРИАЛА (ВАРИАНТЫ) 1993
RU2045549C1
КОМПОЗИЦИОННЫЙ НАПОЛНИТЕЛЬ ДЛЯ ПОЛИМЕРОВ НА ОСНОВЕ ФОСФОГИПСА 2023
  • Медведев Роман Петрович
RU2812080C1

Иллюстрации к изобретению RU 2 048 488 C1

Реферат патента 1995 года СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ ПОЛИМЕРНОЙ СМЕСИ

Использование: в качестве конструкционного материала в технике и медицине. Сущность изобретения: в экструдер загружают 0,1 0,9 мас.ч. на 1 мас.ч. смеси ультрафосфата и органический полимер и смешивают при 180 300°С. Затем расплав подвергают экструдированию или прессуют. 1 табл.

Формула изобретения RU 2 048 488 C1

СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА НА ОСНОВЕ ПОЛИМЕРНОЙ СМЕСИ, включающий смешение органического и неорганического полимера и последующее формование изделия из смеси, отличающийся тем, что в качестве неорганического полимера используют ультрафосфаты в количестве 0,1 0,9 мас.ч. на 1 мас. ч. смеси, которую подвергают термообработке при 180 300oС с последующим ее экструдированием или прессованием.

Документы, цитированные в отчете о поиске Патент 1995 года RU2048488C1

Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Промышленные полимерные композиционные материалы
Под ред
М.Ричардсона, М.: Химия, 1980, с.147-178.

RU 2 048 488 C1

Авторы

Шаулова А.Б.

Шаулов А.Ю.

Шалумов Б.З.

Даты

1995-11-20Публикация

1992-02-14Подача