Изобретение относится к металлургии, в частности к разработке комплексного материала для легирования алюминиевых сплавов железом, предназначенных для изготовления фольги.
Наиболее распространенным материалом для легирования алюминиевых сплавов железом является лигатура, представляющая собой сплав алюминия, содержащий 6-11 мас. железа. Лигатура в определенной пропорции вводится в расплав алюминия для получения заданного содержания железа в сплаве.
Известный материал-лигатура не обеспечивает равномерного распределения железа в сплаве алюминия, особенно в сплавах, предназначенных для получения фольги или изделий, выполненных из фольговых материалов.
Неравномерность химического состава слитков, предназначенных для изготовления фольги приводит к нарушению стабильности механических свойств полуфабрикатов и фольговых материалов, нарушению стабильности свойств готовых изделий, выполненных из фольговых материалов, поскольку изменение содержания железа в фольговых алюминиевых сплавах на 0,1-0,2 мас. может привести к изменению механических свойств готовых изделий в несколько раз.
Известный способ является наиболее близким по назначению и принят в качестве прототипа.
Изобретение направлено на достижение технического результата, заключающегося в повышении легирующего эффекта, снижении расхода легирующего материала, путем обеспечения равномерного распределения железа в слитках сплавов, предназначенных для получения алюминиевой фольги и снижения производственных затрат при изготовлении сплавов.
Указанный технический эффект достигается тем, что материал для легирования алюминиевых сплавов содержащий алюминий и железо выполнен в виде железосодержащих пластин толщиной 0,1-0,4 мм, плакированных с двух сторон алюминием, причем отношение массы алюминия, плакирующего железные пластины к массе железа в пластинах составляет 1/68-1/26. Железосодержащие пластины выполнены из углеродистой стали.
Использование легирующего материала в виде пластин толщиной 0,1-0,4 мм из железа плакированного алюминием с двух сторон, таким образом, что отношение массы алюминия, плакирующего железные пластины к массе железа в пластинах составляет 1/68-1/26, приводит к быстрому растворению железа в алюминиевом расплаве.
Причем плакирующий слой алюминия с двух сторон покрывающий железные пластины, выполняет, очевидно, роль "ингибитора растворения" железа в алюминиевой расплаве, способствуя быстрому и равномерному распределению железа по объему расплава. При этом повышается равномерность распределения железа по объему получаемого слитка, стабилизируется химический состав сплава и, как следствие, повышается стабильность процесса прокатки фольги из-за постоянства механических свойств сплава по длине рулона. Кроме того, улучшается уровень и стабильность свойств фольговых материалов, полученных из такого сплава.
Параметры разработанного материала определяются следующим. Использование пластин толщиной менее 0,1 мм приводит к необоснованным трудозатратам при введении легирующего материала в расплав, поскольку повышается общая масса легирующего материала и ухудшаются условия усвоения железа расплавом алюминия.
При использовании пластин толщиной более 0,4 мм повышается расход железа и снижается равномерность распределения его по объему плавки, увеличивается длительность выдержки расплава после введения материала для легирования, так как требуется более длительная выдержка для растворения материала в расплаве. При этом повышается расход энергоносителя и расплав насыщается водородом, поскольку требуется выдерживать расплав при высокой температуре более длительное время.
При использовании одностороннего плакирования железных пластин алюминием растворение железа в расплаве алюминия происходит неравномерно. Часть легирующего металла оседает на дно печи, что приводит к необходимости введения дополнительного количества легирующих материалов, повышая тем самым его расход.
При использовании легирующего материала с отношением массы алюминия, плакирующего железные пластины к массе железа более 1/68 снижается эффективность растворения железа и уменьшается равномерность распределения его по объему расплава, и, соответственно, литого слитка. При использовании легирующего материала с отношением массы алюминия, плакирующего железные пластины к массе железа менее 1/26 повышается объем используемого легирующего материала, повышаются трудозатраты при введении легирующего материала, а технико-экономическая эффективность использования такого материала приближается к условиям плавки сплава с использованием известной лигатуры. Материал для леги- рования алюминиевых сплавов может быть получен следующим образом. Для получения материала используют стальную ленту из стали 08КП толщиной 2 и 1,5 мм. Для плакирования использовали фольгу из алюминия толщиной 0,2 мм. После совместной прокатки получали плакированную с двух сторон стальную ленту, которую прокатывали вхолодную до толщины 0,1-0,4 мм.
Предлагаемый материал для легирования использовали при выплавке алюминиевого сплава марки АЖ-1 с содержанием железа 0,95-1,15 мас. Исходными компонентами при выплавке сплава служили чушки алюминия марки А6 (ГОСТ 11069-74) и материал для легирования в виде пластин стали 08КП толщиной 0,1; 0,25 и 0,4 мм. Выплавку сплава АЖ-1 проводили в печи ОП-2 в производственных условиях АО "Фольгопрокатный завод". После расплавления алюминия А6, доводили температуру расплава в печи до 770-800оС и затем вводили материал для легирования.
Количество вводимого легирующего материала соответствовало расчетному количеству содержания железа в расплаве равном 1,2 мас.
После перемешивания расплав рафинирования флюсом, снимали шлак, отбирали контрольные пробы на химический анализ и переливали расплав в миксер.
Из миксера расплав разливали в слитки на литейной машине ПН-2. В процессе литья слитков проводили отбор проб на содержание железа в сплаве.
Для сравнения, отливали слитки сплава АЖ-1 с введением в расплав алюминия марки А6 стандартной лигатуры, содержащей 8,5 мас. железа.
Конкретные результаты испытания по разработанному и известному материалам представлены в таблице.
Как видно из данных таблицы, стандартная лигатура алюминий-железо не обеспечивает заданную стабильность состава сплава по содержанию железа, в то время как предложенный материал обеспечивает получение равномерного, заданного состава по всей длине слитка.
Разработанный материал для легирования может быть использован для изготовления сплавов в виде слитков и бесслитковой заготовки из алюминиевых сплавов, содержащих железо в фольгопрокатном производстве.
При опробовании предложенного материала в условиях производства на АО "фольгопрокатный завод" снижены производственные затраты за счет уменьшения объемов лигатурных материалов, упрощена технология введения железа в состав алюминиевых сплавов, высвобождены мощности, необходимые для приготовления лигатуры и, главное, повышена стабильность химического состава слитков.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВО-ЖЕЛЕЗИСТОГО СПЛАВА ДЛЯ ПРОКАТКИ ФОЛЬГИ | 1994 |
|
RU2049134C1 |
СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ ДЛЯ ПРОКАТКИ ФОЛЬГИ | 2007 |
|
RU2418084C2 |
СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРЫ | 2001 |
|
RU2208656C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ФОЛЬГИ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ ДЛЯ ПОСЛЕДУЮЩЕЙ ШТАМПОВКИ | 2001 |
|
RU2181388C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ЛИСТОВ И ЛЕНТ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ | 2000 |
|
RU2171312C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛИТИЕВО-АЛЮМИНИЕВОГО СПЛАВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1992 |
|
RU2033451C1 |
СПОСОБ ВВЕДЕНИЯ В МЕТАЛЛИЧЕСКИЕ РАСПЛАВЫ ЛЕГКОПЛАВКИХ И ЛЕГКООКИСЛЯЮЩИХСЯ ЛЕГИРУЮЩИХ КОМПОНЕНТОВ | 1998 |
|
RU2148658C1 |
Спеченная лигатура из порошковых материалов для легирования алюминиевых сплавов | 2019 |
|
RU2725496C1 |
СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВОГО СПЛАВА, СОДЕРЖАЩЕГО ЛИТИЙ, И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1993 |
|
RU2079563C1 |
СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВОГО СПЛАВА | 2001 |
|
RU2215803C2 |
Использование: металлургия, в частности приготовление алюминиевых, железосодержащих сплавов для прокатки фольги. Сущность изобретения: материал для легирования алюминиевых сплавов выполнен в виде железосодержащих пластин толщиной 0,1-0,4 мм, плакированных с двух сторон алюминием, причем отношение массы алюминия, плакирующего железные пластины к массе железа в пластинах составляет 1/68-1/26. Железосодержащие пластины выполнены из углеродистой стали. Изобретение позволяет повысить равномерность химического состава слитков и снизить производственные расходы. 1 з. п. ф-лы, 1 табл.
Альтман М.Б | |||
Плавка и литье алюминиевых сплавов | |||
Кинематографический аппарат | 1923 |
|
SU1970A1 |
Авторы
Даты
1995-11-27—Публикация
1994-02-04—Подача