Изобретение относится к метрологии и может быть использовано для определения градуировочных характеристик промышленных и коммерческих резервуаров хранения жидких продуктов.
Наиболее близким аналогом к способу определения градуировочных характеристик резервуара является способ жидкостной калибровки резервуара [1] заключающийся в том, что резервуар заполняют жидкостью с известными коэффициентами объемного температурного расширения, объемного сжатия под давлением и вязкости через счетчик количества жидкости до заданного уровня, прерывают процесс заполнения, измеряют уровень и температуру загруженной жидкости, вычисляют объем загруженной жидкости, возобновляют процесс заполнения и заполняют резервуар таким образом до заданного верхнего уровня, сливают жидкость через счетчик количества жидкости, измеряют уровень и температуру жидкости в резервуаре, вычисляют объем жидкости в резервуаре, прерывают процесс слива, возобновляют процесс слива и сливают жидкость из резервуара таким образом до заданного нижнего уровня.
Наиболее близким к изобретению является устройство градуировки резервуара [2] содержащее вычислительный блок, первые вход и выход которого являются соответственно управляющим входом и выходом устройства, коммутатор, первый вход которого подключен к источнику питания, а первый и второй выходы коммутатора соответственно к второму и третьему входам устройства подачи и слива жидкости, первый вход и выход которого соединены через трубопроводы соответственно с источником образцовой жидкости и узлом учета количества жидкости, второй выход которого подключен к пятому входу вычислительного блока, к третьему входу которого подключен выход датчика уровня, расположенного в резервуаре на поверхности жидкости, при этом первый выход узла учета количества жидкости через трубопровод соединен с наливным отверстием, выполненным в нижней части резервуара.
Целью изобретения является повышение точности и расширение функциональных возможностей определения градуировочных характеристик резервуара.
Способ заключается в том, что поверяемый резервуар заполняют жидкостью с известными коэффициентами объемного температурного расширения, объемного сжатия под давлением и вязкости через счетчик количества жидкости до заданного уровня со скоростью, обеспечивающей перемешивание загруженной в резервуар жидкости, прерывают процесс заполнения, измеряют уровень и температуру зеркала жидкости, вычисляют геометрические параметры деформированного и недеформированного резервуара, возобновляют процесс заполнения и заполняют резервуар таким образом до заданного верхнего уровня, перед сливом ждут окончания процесса установления температуры на всех уровнях жидкости в резервуаре, измеряют уровень и температуру зеркала жидкости, регистрируют время начала слива жидкости из резервуара, слив производят через счетчик количества жидкости со скоростью, не вызывающей перемешивание жидкости в резервуаре, через заданные промежутки уровня измеряют уровень и температуру зеркала жидкости и регистрируют время измерения, одновременно измеряют температуру сливаемой жидкости, при появлении колебаний поверхности жидкости в резервуаре прерывают процесс слива и ждут прекращения колебаний, после этого возобновляют процесс слива и сливают жидкость из резервуара таким образом до заданного нижнего уровня, определяют функцию распределения температуры жидкости в резервуаре и уточняют геометрические параметры деформированного и недеформированного резервуара.
На фиг. 1 приведена схема устройства определения градуировочных характеристик резервуара; на фиг.2 схема вертикального плоского сечения резервуара; на фиг.3 схема горизонтального сечения деформированного и недеформированного резервуара; на фиг.4 укрупненная схема радиального сектора горизонтального сечения деформированного и недеформированного резервуара; на фиг.5 эпюры напряжения; на фиг.6 график зависимости площади горизонтального сечения недеформированного траншейного резервуара от уровня; на фиг.7 структурная схема устройства подачи и слива жидкости.
Устройство содержит вычислительный блок 1, первые вход и выход которого являются соответственно управляющим входом и выходом устройства, коммутатор 2, первый и второй входы которого подключены соответственно к источнику питания и второму выходу вычислительного блока, а первый и второй выходы коммутатора подключены соответственно к второму и третьему входам устройства подачи и слива жидкости 3 (УПСЖ), первый вход и выход которого через трубопроводы соединены соответственно с источником образцовой жидкости и узлом учета количества жидкости 4 (УУКЖ), второй выход которого подключен к пятому входу вычислительного блока, а первый выход УУКЖ 4 через трубопровод соединен с наливным отверстием, выполненным в верхней части поверяемого резервуара 6, в наливном отверстии установлен датчик температуры 5, выход которого подключен к четвертому входу вычислительного блока, к третьему и второму входам которого подключены выходы соответственно датчика 7 уровня и датчика 8 температуры, расположенных в резервуаре на поверхности жидкости.
Устройство работает следующим образом.
Первоначально, используя первый вход вычислительного блока 1, вводят исходные данные: конструктивные данные поверяемого резервуара; сведения об образцовой жидкости; условия среды поверки резервуара и задают уровни, на которых нужно вычислить геометрические параметры в процессе заполнения, и промежутки уровня, через которые нужно измерять уровень и температуру зеркала жидкости в процессе слива.
Затем через первый вход вычислительного блока 1 подают команду о начале процесса заполнения резервуара, согласно которому на втором выходе вычислительного блока устанавливают сигнал, который переводит переключатель коммутатора 2 из исходного положения б в положение а и, тем самым соединяют источник питания с вторым входом УПСЖ 3, который начинает перекачивать образцовую жидкость в резервуар через УУКЖ 4 с такой скоростью, что загруженная в резервуар жидкость перемешивается.
Через третий вход вычислительного блока 1 принимают и обрабатывают показания датчика уровня 7 и так продолжают до тех пор, пока поверхность жидкости не достигнет заданного уровня. Определив этот факт, на втором выходе вычислительного блока 1 устанавливают сигнал, который переводит переключатель коммутатора 2 в исходное положение, и тем самым прерывают перекачивание жидкости. Обрабатывая показания УУКЖ 4, вычисляют количество загруженной жидкости, измеряют уровень и температуру зеркала жидкости по показаниям, которые поступают на третий и второй входы вычислительного блока от датчиков соответственно уровня 7 и температуры 8.
Вычисляют геометрические параметры, соответствующие деформированному и недеформированному состояниям поверяемого резервуара. На втором входе вычислительного блока устанавливают сигнал, согласно которому переключатель коммутатора 2 переводится в положение а и тем самым возобновляют перекачивание жидкости в резервуар. Заполняют резервуар таким образом до заданного верхнего уровня.
Перекачивание жидкости прерывают на время установления температуры на всех уровнях жидкости в резервуаре. Затем измеряют уровень и температуру зеркала жидкости по показаниям датчиков соответственно уровня 7 и температуры 8, регистрируют время начала слива. На втором выходе вычислительного блока 1 устанавливают сигнал, который переводит переключатель коммутатора 2 из исходного положения в положение в и тем самым соединяют источник питания с третьим входом УПСЖ 3, который начинает перекачивать жидкость из резервуара через УУКЖ 4 со скоростью, не вызывающей перемешивание жидкости в резервуаре.
Через третий вход вычислительного блока 1 принимают и обрабатывают показания датчика 7 уровня, через данные промежутки уровня измеряют уровень и температуру зеркала жидкости по показаниям датчиков соответственно уровня 7 и температуры 8 и регистрируют время измерения, измеряют температуру сливаемой жидкости по показаниям на четвертом входе вычислительного блока, которые поступают от датчика температуры 5, и количество сливаемой жидкости по показаниям на пятом входе вычислительного блока 1, которые поступают от УУКЖ 4.
Если показания датчика уровня 7 начинают колебаться, то на втором выходе вычислительного блока устанавливают сигнал, который переводит переключатель коммутатора 2 в исходное положение, и тем самым, прерывают перекачивание жидкости. После установления показаний датчика уровня 7 возобновляют процесс слива и сливают жидкость таким образом до заданного нижнего уровня.
На основе полученных данных определяют геометрические параметры, соответствующие деформированному и недеформированному состояниям поверяемого резервуара, и функцию распределения температуры жидкости в резервуаре в зависимости от уровня.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЯ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ ЕМКОСТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1992 |
|
RU2069317C1 |
СПОСОБ ГРАДУИРОВКИ РЕЗЕРВУАРОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1999 |
|
RU2178153C2 |
Способ определения статических характеристик измерительных преобразователей | 1987 |
|
SU1499299A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ВМЕСТИМОСТИ И ГРАДУИРОВКИ РЕЗЕРВУАРОВ И УЛЬТРАЗВУКОВОЕ УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1993 |
|
RU2047108C1 |
МЕРНИК ЖИДКОСТИ С УСТРОЙСТВОМ ПОВЕРКИ | 2018 |
|
RU2696678C1 |
УСТРОЙСТВО ДЛЯ ПОВЕРКИ РАСХОДОМЕРОВ ЖИДКОСТИ | 2023 |
|
RU2810628C1 |
Контроллер измерительного преобразователя | 1987 |
|
SU1462357A1 |
Способ измерения массового расхода жидкостей и стенд для измерения массового расхода жидкостей | 1989 |
|
SU1631288A1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПОДАЧ ТОПЛИВНЫХ НАСОСОВ ВЫСОКОГО ДАВЛЕНИЯ | 2006 |
|
RU2317438C1 |
УСТАНОВКА ПОВЕРОЧНАЯ ЛИНЕЙНЫХ ПЕРЕМЕЩЕНИЙ АВТОМАТИЗИРОВАННАЯ И СПОСОБ ПОВЫШЕНИЯ ТОЧНОСТИ ВЕРТИКАЛЬНЫХ УСТАНОВОК ДЛЯ МЕТРОЛОГИЧЕСКОЙ АТТЕСТАЦИИ ДВУХ УРОВНЕМЕРОВ ОДНОВРЕМЕННО | 2012 |
|
RU2495384C1 |
Сущность изобретения: поверяемый резервуар заполняют жидкостью с известными коэффициентами объемного температурного расширения, объемного сжатия под давлением и вязкости через счетчик количества жидкости для заданного уровня со скоростью, обеспечивающей перемешивание загруженной в резервуар жидкости, прерывают процесс заполнения, измеряют уровень и температуру зеркала жидкости, вычисляют геометрические параметры деформированного и недеформированного резервуара, возобновляют процесс заполнения и заполняют резервуар таким образом до заданного верхнего уровня. Перед сливом ждут окончания процесса установления температуры на всех уровнях жидкости в резервуаре, измеряют уровень и температуру зеркала жидкости, регистрируют время начала слива жидкости из резервуара. Слив производят через счетчик количества жидкости со скоростью, не вызывающей перемешивание жидкости в резервуаре, через заданные промежутки уровня измеряют уровень и температуру зеркала жидкости и регистрируют время измерения, одновременно измеряют температуру сливаемой жидкости. При появлении колебаний поверхности жидкости в резервуаре прерывают процесс и ждут прекращения колебаний, после этого возобновляют процесс слива и сливают жидкость из резервуара таким образом до заданного нижнего уровня, определяют функцию распределения температуры жидкости в резервуаре и уточняют геометрические параметры деформированного и недеформированного резервуара. Устройство содержит вычислительный блок 1, коммутатор 2, устройство 3 подачи и слива жидкости, узел учета 4 количества жидкости, два датчика температуры 5, 8, датчик 7 уровня. 2 с. п. ф-лы, 7 ил.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Зарубежная практика измерения количества и контроля качества нефтепродуктов | |||
Тематический обзор, М.: ЦНИИТЭНЕФТЕХИМ, 1989, с.26-34 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Способ градуировки резервуаров | 1985 |
|
SU1328681A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1996-02-20—Публикация
1992-06-30—Подача