УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СИЛЫ ПОВЕРХНОСТНОГО ТРЕНИЯ Российский патент 1996 года по МПК G01N19/02 

Описание патента на изобретение RU2057321C1

Изобретение относится к измерительной технике и может быть использовано при исследовании физико-механических характеристик газового потока с твердыми частицами, в частности для измерения силы поверхностного трения потока о стенку трубопровода.

Известно устройство для определения силы поверхностного трения газового потока с твердыми частицами о стенку трубопровода, состоящее из неподвижного участка трубопровода и подвижной секции, входящей торцами внутрь неподвижного участка. Подвижная секция и неподвижная герметично соединены упругими сильфонами, внутрь которых вводится вторичный газ [1]
Недостатком данного устройства является возможность попадания и отложения твердых частиц в зазоре между внутренней поверхностью неподвижного и подвижного участков, что обусловливает большой разброс в измерениях силы поверхностного трения.

Известно устройство для измерения силы поверхностного трения, состоящее из подвижного участка трубопровода, соединенного посредством резиновых манжетов с неподвижными участками трубопровода, на подвижном участке трубы закреплен шток, соединенный с датчиком перемещения [2]
Наличие внутреннего избыточного давления, приводящее к деформации резиновых манжетов, влияющей на измерения силы поверхностного трения потока о стенку трубопровода как в сторону завышения измеренных величин, так и в сторону их занижения, не обеспечивает требуемой точности измерений.

Для повышения точности измерений силы поверхностного трения газового потока с твердыми частицами о стенку трубопровода в устройстве для измерения силы поверхностного трения, включающем неподвижные участки трубопровода и подвешенный между ними на пружинах подвижный участок, сочлененные резиновыми манжетами, и шток, прикрепленный к подвижному участку, упирающийся в датчик перемещения, предусмотрены следующие конструктивные отличия:
коаксиально с трубопроводом установлена герметичная камера, закрепленная на неподвижных его участках;
неподвижные участки снабжены отверстиями, диаметр которых равен 0,04-0,01 диаметра трубопровода;
кромки верхнего торца подвижного участка трубопровода выполнены острыми.

На фиг.1 изображено устройство, продольный разрез; на фиг.2 зависимость силы трения потока F от массовой расходной концентрации μ.

Устройство содержит трубопровод, состоящий из жестко закрепленных участков 1 и установленного с возможностью осевого перемещения участка 2, подвешенного на пружинах 3. Эти участки сочленены с помощью резиновых манжет 4. К участку 2 прикреплен шток 5, выполненный в виде иглы, упирающейся в датчик 6 перемещения. К участкам 1 трубопровода жестко прикреплена герметичная камера 7, сообщающаяся с трубопроводом посредством отверстий 8.

Устройство для измерения силы поверхностного трения о стенку трубопровода восходящего газового потока с твердыми частицами работает следующим образом.

В трубопровод снизу подается поток газа с твердыми частицами. При движении потока возникает сила трения, которая нарушает равновесие между силой упругости пружины 3 и весом участка 2 трубопровода, вследствие чего пружина сжимается, а участок 2 трубопровода, установленный с возможностью перемещения, сдвигается в осевом направлении. Благодаря наличию отверстий 8, посредством которых полость трубопровода сообщается с герметичной камерой 7, происходит выравнивание давлений внутри трубопровода и внутри камеры 7, тем самым исключается деформация резиновых манжет 4, отрицательно влияющая на измерения. Величина диаметра отверстий 8 зависит от частоты пульсаций давления в потоке и определяется экспериментально: большим частотам пульсаций соответствует больший диаметр и, наоборот, меньшим частотам соответствует меньший диаметр. Наличие острых кромок в верхнем торце подвижного участка 2 трубопровода препятствует накоплению на них твердых частиц и тем самым повышает достоверность измерений. При перемещении участка 2 шток 5 в виде иглы деформирует датчик 6, который выдает сигнал на прибор, регистрирующий величину этой деформации (НДЦ-1 Измеритель деформации цифровой). Получают зависимость деформации датчика от силы трения потока. Сравнивая эту зависимость с калибровочной зависимостью деформации датчика от перемещения трубы, судят о величине силы трения. При этом учитывают ток газа от нижнего отверстия к верхнему, возникающий в связи с тем, что избыточное давление вблизи нижнего отверстия выше, чем вблизи верхнего отверстия.

Предлагаемая конструкция прошла лабораторные испытания.

При измерениях было использовано устройство с диаметром трубопровода 50 мм, длиной подвижного участка трубопровода 1000 мм, диаметром герметичной камеры 160 мм, диаметры отверстий 8-2 мм. В качестве потока с твердыми частицами использовали смесь азота с частицами стекла диаметром 1,18 мм. Скорость газа 16,5 м/с. На полученном графике дана зависимость силы трения F потока о стенку трубопровода от массовой расходной концентрации μ. При этом сначала измеряли силу трения F чистого газового потока ( μ= 0), которую сравнили с теоретическим значением, известным для газовых потоков.

Похожие патенты RU2057321C1

название год авторы номер документа
СПОСОБ ВЗРЫВОЗАЩИТЫ СИСТЕМЫ ТРАНСПОРТИРОВКИ ГАЗОВ И ПЫЛЕГАЗОВЫХ СМЕСЕЙ 1992
  • Гликин Марат Аронович[Ua]
  • Тюльпинов Александр Дмитриевич[Ua]
  • Мемедляев Зия Наимович[Ua]
  • Савицкая Людмила Михайловна[Ua]
  • Принь Елена Маратовна[Ua]
  • Ревунов Андрей Николаевич[Ua]
  • Викс Ирина Николаевна[Ua]
RU2075982C1
СПОСОБ ДВУХСТУПЕНЧАТОЙ КАТАЛИТИЧЕСКОЙ КОНВЕРСИИ УГЛЕВОДОРОДНОГО СЫРЬЯ 1991
  • Фурен Эдуард Львович[Ua]
  • Крупник Леонид Исакович[Ua]
  • Лендер Юрий Васильевич[Ua]
  • Булачев Борис Александрович[Ua]
RU2088517C1
КОНСТРУКЦИЯ СКВАЖИНЫ 1996
  • Кустышев Александр Васильевич[Ru]
  • Густилин Виктор Геннадьевич[Ua]
RU2101472C1
СПОСОБ ВЗРЫВОЗАЩИТЫ ПРИ ЭКСПЛУАТАЦИИ СИСТЕМ ТРАНСПОРТИРОВКИ ГАЗОВ 1994
  • Гликин Марат Аронович[Ua]
  • Тюльпинов Александр Дмитриевич[Ua]
  • Мемедляев Зия Наимович[Ua]
  • Савицкая Людмила Михайловна[Ua]
  • Олейник Владимир Иванович[Ua]
  • Величко Анатолий Стефанович[Ua]
  • Скляров Константин Борисович[Ua]
  • Кулешов Николай Павлович[Ua]
RU2083241C1
СПОСОБ ПОЛУЧЕНИЯ 1-ЦИАН-2-ИМИНОЦИКЛОПЕНТАНА 1994
  • Лубяницкий Израиль Яковлевич[Ua]
  • Постернак Светлана Михайловна[Ua]
  • Ильенко Игорь Борисович[Ua]
RU2083559C1
СПОСОБ ПОЛУЧЕНИЯ АДИПИНОВОЙ КИСЛОТЫ 1994
  • Лубяницкий Израиль Яковлевич[Ua]
  • Ильенко Игорь Борисович[Ua]
  • Ольшанская Тамара Владимировна[Ua]
RU2069654C1
СПОСОБ ПРИГОТОВЛЕНИЯ НИКЕЛЬХРОМОВОГО КАТАЛИЗАТОРА ДЛЯ ГИДРИРОВАНИЯ БЕНЗОЛА 1992
  • Суворин А.В.
  • Рыжак И.А.
RU2054319C1
ВНУТРИТРУБНЫЙ СНАРЯД-ДЕФЕКТОСКОП С ИЗМЕНЯЕМОЙ СКОРОСТЬЮ ДВИЖЕНИЯ 2008
  • Чеботаревский Юрий Викторович
  • Синев Андрей Иванович
  • Плотников Петр Колестратович
  • Никишин Владимир Борисович
  • Фомин Антон Игоревич
RU2361198C1
ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ПРИГОТОВЛЕНИЯ НАСЫЩЕННЫХ РАСТВОРОВ 1991
  • Шорина Л.А.
  • Яруллин Р.Н.
  • Хоняк И.И.
RU2050957C1
ПРОБООТБОРНИК ДЛЯ ИСПЫТАТЕЛЯ ПЛАСТОВ 1999
  • Сухачев Ю.В.
  • Крылов Г.В.
  • Штоль В.Ф.
  • Исаев Ю.Н.
RU2170349C2

Иллюстрации к изобретению RU 2 057 321 C1

Реферат патента 1996 года УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СИЛЫ ПОВЕРХНОСТНОГО ТРЕНИЯ

Изобретение относится к измерительной технике, в частности к измерению силы поверхностного трения, и может быть использовано при исследованиях физико-механических характеристик газового потока с твердыми частицами. Задача-повышение точности измерений. Для этого устройство для измерения силы поверхностного трения, включающее неподвижные участки 1 трубопровода, подвешенный между ними на пружинах подвижный участок 2 и шток 5, прикрепленный к подвижному участку 2, упирающийся в датчик 6 перемещения, снабжено герметичной камерой 7, установленной коаксиально с трубопроводом и закрепленной на неподвижных его участках 1. Неподвижные участки 1 выполнены с отверстиями 8, диаметр которых равен 0,04 - 0,01 диаметра трубопровода. 2 ил.

Формула изобретения RU 2 057 321 C1

УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СИЛЫ ПОВЕРХНОСТНОГО ТРЕНИЯ о стенку трубопровода восходящего газового потока с твердыми частицами, содержащее три последовательно установленных участка трубопровода, два из которых жестко закреплены, а размещенный между ними, соединенный с их торцами резиновыми манжетами третий участок установлен с возможностью осевого перемещения и скрепленный с третьим участком трубопровода, связанный с датчиком перемещения шток, отличающееся тем, что оно снабжено установленной на жестко закрепленных участках трубопровода герметичной камерой, а в стенках жестко закрепленных участков трубопровода выполнены отверстия, диаметр d которых определяют из соотношения
d = (0,04 - 0,01) D,
где D - диаметр частей трубопровода.

Документы, цитированные в отчете о поиске Патент 1996 года RU2057321C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
WPM Van Swaaiy, C.Buurman, J.W
Van Breugel Shear Jtreeses on the Wall of a dense gas - solid riser
Chemical Endln Jcience, 1970, V, 25 N 11 рр
Железнодорожный поворотный круг 1914
  • К. Кленш
SU1818A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Егоров В.М., Севастьянов А.Г., Смоловик В.А
и Пачин В.Н
Измеренее параметров потока при поршневом пневматическом транспорте дисперсных материалов
Сб
Вопросы импульсного пневмотранспорта, газоочистки и пневматического перемешивания дисперсных материалов, Томск, 1972, с.75-80.

RU 2 057 321 C1

Авторы

Овсиенко Петр Владимирович[Ua]

Крупник Леонид Исаакович[Ua]

Айнштейн Виктор Герцевич[Ua]

Даты

1996-03-27Публикация

1992-03-25Подача