Изобретение относится к способам генерации газов, в частности к химической генерации кислорода в системах, требующих компактного автономного источника кислорода, например, в медицине, в рыбной промышленности для обогащения воды кислородом при перевозке рыбы, в сельском хозяйстве для проращивания в емкостях семян и т.д.
Известны способы получения кислорода за счет разложения растворов, содержащих пероксид водорода, под действием формованного в единый блок диоксида марганца [1] Выделение кислорода начинается сразу при погружении катализатора в раствор.
Способ позволяет регулировать газовый поток, при удалении катализатора из раствора генерация газа прекращается. Главный недостаток способа состоит в том, что за счет блокирования поверхности катализатора пузырьками газа интенсивность газового потока быстро падает. Восстановление активных центров на поверхности каталитического блока обеспечивается специальными приспособлениями (вибратором, щеткой или нагревателем). Приведение в действие приспособлений, активирующих катализатор, требует подвода энергии, что сужает области использования способа.
Наиболее близким по технической сущности к изобретению является способ получения кислорода при разложении водных растворов пероксида водорода в присутствии диоксида марганца, сформованного в единый блок, с малорастворимой добавкой перхлората калия [2] Стабильность газового потока обеспечивается за счет обновления поверхности катализатора и постепенного добавления в раствор диоксида марганца при медленном растворении добавки, подведение дополнительной энергии для активации катализатора не требуется. Кислород начинает выделяться при погружении каталитического блока в раствор пероксида водорода. Способ допускает регулирование газового потока. Главный недостаток способа непроизводительные потери кислорода за счет относительно медленного выхода генерации на режим и значительного времени ее замедления.
Изобретение решает задачу снижения непроизводительных потерь кислорода за счет сокращения времени выхода процесса на режим и времени замедления процесса.
Это достигается тем, что разложение раствора пероксида водорода под действием каталитического блока, состоящего из диоксида марганца и малорастворимого вещества, проводится в присутствии карбоната натрия. Изобретение позволяет в несколько раз сократить время выхода процесса на режим и время замедления генерации, тем самым снизить непроизводительные потери кислорода. Максимальное снижение непроизводительных расходов кислорода, по сравнению с прототипом, достигается при использовании кислородвыделяющих растворов с мольным отношением карбоната натрия к пероксиду водорода, близким к мольному отношению компонентов в растворе пероксольвата карбоната натрия Na2CO3 х х1,5H2O2 при содержании H2O2 не более 5%
П р и м е р 1. На чертеже изображен компактный генератор, включающий реакционный сосуд 1 емкостью 300 см3, каталитический блок 2, отверстие 3 для выхода газа и загрузочное отверстие с крышкой 4 и держателем каталитического блока 5. Каталитический блок 2 закрепляют в держателе 5, устроенном так, что рабочей поверхностью является только торцевая часть каталитического блока 2 (поверхность составляет 1,81 см2).
Объем выделяющегося через отверстие 3 кислорода измеряют газовой бюреткой. За начало отсчета принято время погружения каталитического блока 2 в раствор. Разложение раствора кислородоносителя проводят при 20оС.
Время выхода процесса генерации на режим определялось временем достижения скорости генерации кислорода, составляющей не менее 70% от средней; время замедления генерации время генерации кислорода (в конце процесса) с интенсивностью газового потока менее 70% от средней. Непроизводительные потери кислорода определялись объемом кислорода (в относительно общего объема), выделяющимся при интенсивности газового потока менее 70% от средней. Средняя интенсивность (скорость) газового потока определялась по формуле Vобщ/t, где Vобщ общий объем выделенного кислорода, см3, t время полного разложения кислородоносителя в растворе, мин.
В опытах 1-5 (табл. 1) в реакционном сосуде 2 смешивают водные растворы карбоната натрия и пероксида водорода, погружают каталитический блок. Общий вес раствора 132 г. Содержание пероксида водорода в растворе 3% Каталитический блок содержал 2,5% пероксида марганца.
Опыт 6 (табл. 1) отличается от опытов 1-5 тем, что в реакционный сосуд 2 помещался раствор пероксосольвата карбоната натрия, приготовленный растворением (t20оС) при активном перемешивании в течение 15 мин гранулированного пероксольвата карбоната натрия (техническое название "Персоль"). В процессе приготовления раствора потери кислорода составляют около 5%
В опыте 7 (табл. 1) в качестве кислородоносителя использовался пероксосольват карбоната натрия марки "технический". Для снижения потерь кислорода при медленном растворении гранул пероксосольвата раствор предварительно не готовился. Гранулы помещались в реакционный сосуд 2, добавлялась вода, погружался каталитический блок. Общий вес раствора 132 г. Каталитический блок содержал 2,5% пероксида марганца.
Как следует из табл. 1, введение карбоната натрия в растворы пероксида водорода позволяет значительно уменьшить время выхода процесса генерации на режим и время замедления реакции. Максимальное снижение (вдвое) непроизводительных расходов кислорода достигается при мольном отношении карбоната натрия к пероксиду водорода в растворе, соответствующем отношению этих компонентов в растворе пероксосольвата карбоната натрия Na2CO3 · 1,5H2O2 и составляет 1: 1,5. Увеличение содержания карбоната натрия в растворе более 6,2% не приводит к улучшению характеристик процесса, более того, при содержании карбоната натрия в исходном растворе более 9% непроизводительные потери кислорода увеличиваются (табл. 1, опыт 5).
Как видно из опытов 6 и 7, при использовании в качестве кислородоносителей растворов пероксосольвата карбоната натрия непроизводительные потери кислорода в несколько раз выше, чем при использовании растворов пероксида водорода с добавками карбоната натрия (оп. 1-5, табл. 1).
П р и м е р 2. Условия проведения опытов не отличаются от условий проведения опытов 1-5, описанных в примере 1. Исследовались растворы с концентрацией по пероксиду водорода 3,5 и 10% и отношением компонентов Na2CO3:H2O2 1: 1,5. Каталитический блок содержал 2,5% пероксида марганца.
Для сравнения во всех случаях в идентичных условиях проводились опыты по разложению растворов пероксида водорода, не содержащих карбонат натрия.
Результаты приведены в табл. 2.
Как следует из табл. 2, при создании в растворе оптимального мольного отношения между карбонатом натрия и пероксидом водорода 1:1,5, в случае 3 и 5%-ных растворов непроизводительные потери кислорода сокращаются вдвое. Введение карбоната натрия в более концентрированные растворы по пероксиду водорода, например 10%-ный (табл. 2), неэффективно: увеличивается время замедления генерации, возрастают непроизводительные потери кислорода. Связано это, по-видимому, с блокированием каталитических центров малорастворимым пероксосольватом карбоната натрия, выпадающим в осадок в значительных количествах в растворах с концентрацией по пероксиду водорода выше 5%
П р и м е р 3. Условия проведения опытов не отличаются от условий, описанных в примере 1 (оп. 1-5). Разложение растворов проводилось в присутствии каталитических блоков разного состава.
В табл. 3 представлены характеристики процесса генерации кислорода при использовании разных составов катализатора.
Для сравнения приведены результаты опытов по разложению растворов H2O2, не содержащих Na2CO3, проводимых в идентичных условиях.
Как следует из табл. 3, введение карбоната натрия в кислородвыделяющие растворы эффективно снижает непроизводительные потери кислорода при использовании каталитических блоков разного состава. Составом каталитического блока можно менять характеристики газового потока.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОБЕЗВРЕЖИВАНИЯ ГИПОХЛОРИТНЫХ РАСТВОРОВ | 1993 |
|
RU2080304C1 |
Способ получения кислорода | 1990 |
|
SU1723029A1 |
Способ получения кислорода | 1988 |
|
SU1576482A1 |
ПИРОТЕХНИЧЕСКИЙ СОСТАВ ДЛЯ ГЕНЕРАЦИИ КИСЛОРОДА | 1993 |
|
RU2057707C1 |
СОСТАВ ДЛЯ ПОЛУЧЕНИЯ ПЕРОКСИДА ВОДОРОДА | 1991 |
|
RU2006455C1 |
СПОСОБ ОЧИСТКИ НЕФТИ И ГАЗОКОНДЕНСАТА ОТ СЕРОВОДОРОДА И МЕРКАПТАНОВ | 2000 |
|
RU2177494C1 |
СПОСОБ ПОЛУЧЕНИЯ ЛЕТУЧИХ АЦЕТИЛАЦЕТОНАТОВ РЕДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ | 1991 |
|
RU2027697C1 |
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ОЧИСТКИ ОТРАБОТАВШИХ ГАЗОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ | 2000 |
|
RU2190470C2 |
СПОСОБ ПОЛУЧЕНИЯ ПРОДУКТА ДЛЯ РЕГЕНЕРАЦИИ ВОЗДУХА | 2009 |
|
RU2408403C1 |
СПОСОБ ПОЛУЧЕНИЯ ПЕРОКСИДА ВОДОРОДА И КАТАЛИЗАТОР ДЛЯ ПОЛУЧЕНИЯ ПЕРОКСИДА ВОДОРОДА | 1997 |
|
RU2131395C1 |
Использование: получение автономных источников кислорода. Сущность изобретения: в раствор H2O2 с концентрацией не более 5 мас.% вводят Na2CO3 в молярном отношении H2O2: Na2CO3, не более 1,5 вводят формованный в блок катализатор, содержащий MnO2 и KCIO4. Время выхода генерации на режим не более 6 мин, время замедления генерации не менее 15 мин, непроизводительные потери кислорода 6 - 14%. 1 ил., 3 табл.
СПОСОБ ПОЛУЧЕНИЯ КИСЛОРОДА, включающий разложение раствора пероксида водорода при введении в него формованного в блок катализатора, содержащего диоксид марганца и перхлорат калия, отличающийся тем, что берут раствор пероксида водорода с концентрацией не более 5 мас. и дополнительно вводят в него карбонат натрия в молярном отношении Н2О2 Na2CO3, не превышающем 1,5.
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Способ получения кислорода | 1990 |
|
SU1723029A1 |
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Авторы
Даты
1996-04-10—Публикация
1992-12-28—Подача