КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА Российский патент 1996 года по МПК C04B38/00 C04B38/00 C04B14/38 C04B111/20 

Описание патента на изобретение RU2057741C1

Изобретение относится к дешевой, эффективной, высокотемпературной тепловой изоляции, предназначенной для разогревных источников тока, а также для изготовления тепловой изоляции технологического оборудования и бытовых электоприборов. На основе изобретения возможно изготовление тепловой изоляции в виде гибких листов картона, плит, блоков, обмазок.

Известны аналоги изобретения, например
1. Композиция содержащая, мас. Минеральное волокно 75-97 Бентонитовая глина 2,94-22,5 Жидкое стекло 0,06-2,2
2. Композиция содержащая, мас. Минеральное волокно 25-58
Высокопористый
зернистый материал (перлит) 16-30
Влагорегулирующий материал (каолин) 6-20 Связующее Остальное
3. Изолирующий состав для разливочных ковшей, содержащий огнеупорное волокно с золотой рисовой шелухи.

4. Композиция содержащая, мас. Огнеупорное стекло- волокно 41-55 Огнеупорная глина 35-49 Полиакриламид 0,1-0,6
Лигносульфонат натрия или кальция 4,9-7,5 ПВА-дисперсия 2,5-5,0
5. Композиция, содержащая, мас. Глина 55-97 Шамот 2-35
Супертонкое силикат- ное волокно 1-10
По технической сущности и достигаемому результату наиболее близки к изобретению композиции 5.

Известные композиции обладают высокой теплоизоляционной эффективностью ( λ= 0,05-0,06 Вт/м К), но для композиций 1 и 4 характерно высокое содержание волокон и, следовательно, высокая стоимость, для композиций 2 и 3 необходимые, кроме того, дефицитные компоненты: перлит и зола рисовой шелухи, а на основе композиции 5 невозможно изготовление гибкого картона.

Теплопроводность этих композиций соответствует уровню теплопроводности материалов на основе супертонких волокон.

Известные композиции обладают невысокой сопротивляемостью сжатию, так как структура волокнистых материалов представляет собой сочетание значительных по сравнению с элементами каркаса пустот со слабо скрепленными волокнами. Поэтому прочность материала, полученного из композиции 4 при объемной массе 200-500 кг/м3 невелика и находится в пределах 2-5 кг/см2. Прочность материала, полученного из композиции 5, может превышать указанное значение в случае высокотемпературного обжига, что сопровождается возникновением хрупкости, ограничивающей область его применения.

Изобретением решается задача получения дешевого высокотемпературного теплоизоляционного материала, характеризующегося достаточной гибкостью при изготовлении его в форме листа картона.

Задача решается за счет того, что в композицию для получения теплоизоляционного материала, включающую глину, шамот и супеpтонкое силикатное волокно дополнительно введен химически распушенный асбест при следующем соотношении компонентов, мас. Глина 40-92,5 Шамот 0,5-35
Супертонкое силикатное волокно 5-15
Химически распушенный асбест 2-10
Физическая сущность эффекта, используемого в изобретении, заключается во взаимном проникновении друг в друга эластичной микроволокнистой структуры химически распушенного асбеста (средний диаметр волокон после химической распушки составляет около 5 нм) и сплошного континуума глины.

Одновременно достигается армирование гибкой структурой и дробление сплошной среды глины волокнами асбеста на фрагменты, средний размер которых можно оценить по формуле
Dфр= 0,885 dср где Dфф размер фрагмента;
dср средний диаметр волокна химически распушенного асбеста (5 нм);
γтт плотность твердого тела волокон (2,52 г/см2);
γвол.стр. плотность волокнистой структуры (0,03-0,1 г/см3)
Дробление сплошной среды глины на фрагменты размером 2,5 нм обеспечивает низкую теплопроводность при низких температурах, а заполненность клеток структуры глиной низкую теплопроводность при высоких температурах и высокую сопротивляемость сжимающим нагрузкам. Эластичность каркаса обеспечивает гибкость материала.

Предлагаемая композиция при сохранении теплопроводности на известном уровне позволяет получить на ее основе гибкие картоны, что в свою очередь расширяет область применения.

На основе данной композиции возможно изготовление плит толщиной 5-20 мм, блоков, фасонных изделий, гибкого картона толщиной 1-2 мм, обмазок. Все эти материалы обладают теплопроводностью 0,06 Вт/м К при 100оС и прочностью на сжатие 15 кГс/см2.

П р и м е р 1. Для изготовления плит, фасонных изделий, блоков и обмазок применяется следующая рецептура, мас. Глина 50 Шамот 32
Супертонкое силикатное волокно 10
Химически распушенный асбест 8
Изготовление производится путем гомогенизации смеси в Z-образном или шнековом смесителе в водной среде при соотношении сухих компонентов и воды 1:1,5-1:1,7. Готовая смесь подвергается формованию и сушке.

П р и м е р 2. Для изготовления картона применяется рецептура, мас. Глина 81 Шамот 1 Супертонкое силикатное волокно 10 Химически распушенный асбест 8
Гомогенизация производится в водной пульпе с помощью лопастного смесителя при содержании 3,5 л воды на 1 кг сухих компонентов (1:3,5). Пульпу формуют методом картонного литья и сушат.

Полученные таким образом материалы обладают объемной массой 500-700 кг/с3 и теплопроводностью 0,065 Вт/м К при 100оС и 0,12 Вт/м К при 1000оС.

Другие составы композиции и свойства получаемого материала представлены в таблице.

Для композиции может быть использована глина любого вида.

Шамот также может быть изготовлен из глины любого вида.

В качестве волокон могут быть использованы силикатные супертонкие волокна, базальтовые, кремнеземные, кварцевые, каолиновые и т.п.

Асбестовые волокна подвергаются химической распушке путем выдерживания в водном растворе поверхностноактивного вещества натриевой соли ди-2-этилгексилового эфира сульфоянтарной кислоты, выпускаемого в виде смачивателя марки СВ-102 (ТУ 6-14-935-80).

Концентрация смачивателя 50 г/л, содержание асбеста 100-200 г/л, продолжительность выдержки при комнатной температуре 24 ч.

Данная композиция не может содержать химически распушенного асбеста менее 2% так как при этом происходит образование трещин, а также более 10% так как это экономически нецелесообразно.

Содержание шамота не может быть выше 35% поскольку это приводит к увеличению теплопроводности, и менее 0,5% так как это приводит к образованию микротрещин.

Содержание супертонких волокон не может быть выше 15% так как это экономически нецелесообразно, и менее 5% так как это сопровождается увеличением объемной массы и теплопроводности.

Разнообразие изготавливаемых изделий (обмазки, блоки, плиты, гибкий картон) позволяет решать многие технические задачи, связанные с высокотемпературной тепловой изоляцией. Из этих материалов могут быть изготовлены высокотемпературные футеровки, а также тепловая изоляция бытовых электроприборов.

Похожие патенты RU2057741C1

название год авторы номер документа
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА 1986
  • Николаев А.С.
  • Коробов В.А.
  • Нахшин М.Ю.
  • Каменцев М.В.
RU2091350C1
СЫРЬЕВАЯ СМЕСЬ ДЛЯ ИЗГОТОВЛЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА 1997
  • Лузин В.П.
  • Лузина Л.П.
  • Корнилов А.В.
  • Гонюх В.М.
RU2152373C1
СПОСОБ ИЗГОТОВЛЕНИЯ СУПЕРТОНКОЙ ТЕПЛОВОЙ ИЗОЛЯЦИИ ДЛЯ ТЕПЛОВОГО ИСТОЧНИКА ТОКА 2016
  • Архипенко Владимир Александрович
  • Карцев Александр Иванович
  • Мартынов Сергей Александрович
  • Кондратенков Валентин Иванович
  • Луппов Александр Сергеевич
RU2633386C2
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕПЛОВОЙ ИЗОЛЯЦИИ ДЛЯ ТЕПЛОВОГО ЛИТИЕВОГО ИСТОЧНИКА ТОКА 2011
  • Архипенко Владимир Александрович
  • Каменцев Михаил Вениаминович
  • Кондратенков Валентин Иванович
  • Николаев Александр Сергеевич
  • Нахшин Марк Юрьевич
  • Иванов Борис Валентинович
  • Денискин Анатолий Григорьевич
RU2475897C1
Композиция для изготовления тепло-изОляциОННОгО МАТЕРиАлА 1979
  • Харитон Яков Григорьевич
  • Ященко Ольга Михайловна
  • Рыбалка Евгений Алексеевич
  • Сенько Ирина Дмитриевна
SU833914A1
МИНЕРАЛЬНЫЙ ВСПЕНЕННО-ВОЛОКНИСТЫЙ ТЕПЛОИЗОЛЯЦИОННЫЙ МАТЕРИАЛ 2014
  • Кисиль Игорь Александрович
RU2568199C1
Теплоизоляционный материал 1978
  • Плисс Давид Аронович
  • Трофимов Валентин Михайлович
  • Чистяков Борис Захарович
  • Бржезанский Владимир Осипович
SU876630A1
Сырьевая смесь для изготовления теплоизоляционного материала 1986
  • Устинов Борис Сергеевич
SU1368291A1
СПОСОБ ПОЛУЧЕНИЯ ВОЛОКНИСТЫХ ФОРМОВАННЫХ ИЗДЕЛИЙ 1989
  • Козлова Е.А.
  • Медведев Ю.Н.
  • Баженова Т.С.
  • Ляшевич Н.В.
  • Смирнов Ю.В.
  • Свиридова З.И.
  • Шашацкий В.А.
  • Куников Ю.Ц.
SU1624851A1
Композиция для изготовления теплоизоляционных изделий 1986
  • Акопян Гамлет Гайкович
  • Фармазян Рафаэль Симонович
  • Бабаян Грант Григорьевич
  • Даштоян Степан Абрамович
  • Геворкян Гарник Мамиконович
  • Тоноян Нина Цолаковна
  • Казарян Литвин Элигумович
SU1416475A1

Иллюстрации к изобретению RU 2 057 741 C1

Реферат патента 1996 года КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА

Использование: получение эффективного высокотемпературного теплоизоляционного материала, предназначенного для разогревных источников тока, а также технологического оборудования и электроприборов. Сущность: композиция для получения телоизоляционного материала включает, мас.%: глина 40-92,5; шамот 0,5- 35; супертонкое силикатное волокно 5-15; химически распушенный асбест 2-10. Приготовление композиции осуществляют гомогенизацией смеси компонентов в смесителе в водной среде. Получаемый теплоизоляционный материал характеризуется объемной массой 350-800 кГ/м3, прочностью при сжатии 8-25 кГс/см2, коэффициентом теплопроводности при 100oС 0,06-0,10 Вт/м • К, при 1000oС 0,15-0,18 Вт/м • К. Возможно изготовление теплоизоляционного материала в виде картона. 1 табл.

Формула изобретения RU 2 057 741 C1

КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ ТЕПЛОИЗОЛЯЦИОННОГО МАТЕРИАЛА, включающая глину, шамот и супертонкое силикатное волокно, отличающаяся тем, что она дополнительно содержит химически распушенный асбест при следующем соотношении компонентов, мас.

Глина 40,0 92,5
Шамот 0,5 35,0
Супертонкое силикатное волокно 5 15
Химически распущенный асбест 2 10

Документы, цитированные в отчете о поиске Патент 1996 года RU2057741C1

Кипятильник для воды 1921
  • Богач Б.И.
SU5A1
КЮВЕТА ДЛЯ ВЫРАЩИВАНИЯ МИКРООРГАНИЗМОВ — ПРОДУЦЕНТОВ БИОЛОГИЧЕСКИ АКТИВНЫХ ВЕЩЕСТВ 0
SU194034A1
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1

RU 2 057 741 C1

Авторы

Николаев А.С.

Коробов В.А.

Нахшин М.Ю.

Каменцев М.В.

Даты

1996-04-10Публикация

1992-04-01Подача