Изобретение относится к энергетике, а именно к турбостроению, и может применяться для охлаждения теплонапряженных поверхностей газотурбинной установки (ГТУ).
Известны различные способы охлаждения элементов поверхности, в частности лопаток, путем подачи охлаждающей среды (воды, газа, воздуха) на омывание высокотемпературным рабочим телом поверхности.
Известен способ охлаждения теплонапряженных поверхностей, выбранный за прототип, когда в качестве хладагента используются углеводородные соединения, например метан, который подается в полую лопатку, выходит из нее через многочисленные отверстия малого диаметра в объем проточной части ГТУ, где и вступает в эндотермическую реакцию с продуктами горения основного топлива.
К недостаткам прототипа можно отнести следующее.
При прохождении углеводородных соединений (метана), не содержащих паров воды и диоксида углерода, внутри полых лопаток и направляющих каналов, температура которых достигает 800-900оС, на нагретых поверхностях и в объеме происходят процессы пиролиза (Кр 5,53 при 900оС), приводящие, во-первых, к зауглероживанию внутренних стенок лопаток и выходных отверстий из нее, что приводит к невозможности дальнейшей подачи хладагента. Во-вторых, из отверстий лопаток будут выходить не только метан, но и продукты его разложения, т.е. смесь водорода и метана. Кроме того, выходящий из отверстий лопатки углеводородный газ (при условии, что он будет выходить) реагирует с продуктами горения основного топлива не только в объеме, прилегающем к поверхности лопатки, но и во всем оставшемся объеме проточной части установки. Тем самым не будут создаваться условия тепловой завесы или "защитного" низкотемпературного приграничного слоя, предохраняющие поверхность лопатки от температурных перегрузок. Учитывая, что в продуктах горения основного топлива (рабочего тела) присутствуют значительные концентрации окислителей (кислорода, закиси и окиси азота), одновременно с реакцией конверсии метана будут иметь место экзотермические реакции окисления метана и его продуктов. И поскольку при температурах более 1200оС основное тепло подводится излучением от пламени, тепловая завеса в данном случае не эффективна.
Целью изобретения является устранение вышеперечисленных недостатков и осуществление эффективного охлаждения теплонапряженных поверхностей ГТУ за счет проведения каталитических эндотермических реакций паровой или углекислотной конверсии метана или других углеводородных соединений на каталитических поверхностях, сопряженных с внутренней стенкой лопатки и направляющих каналов. В качестве химических реагентов используются либо метан с парами воды, либо метан и двуокись углерода, и охлаждение поверхностей происходит непосредственно в результате съема тепла при проведении указанных реакций. В полость газотурбинной лопатки (рис. 1), внутренняя часть которой сопряжена с каталитической поверхностью, поступает одна из представленных пар реагентов. На разогретой за счет высокотемпературного рабочего тела каталитической поверхности осуществляется эндотермические каталитические реакции. И поскольку предложенные реакции имеет значительный эндотермический эффект (для первой реакции 206 кДж/моль, второй 247 кДж/моль, третьей 49,8 кДж/моль), происходит охлаждение теплонапряженных поверхностей элементов энергоустановки. Далее, через многочисленные отверстия в объем проточной части ГТУ выходят продукты каталитических реакций.
Созданы образцы катализаторов Pd/C, Pt/Al2O3 и оригинальные интерметаллические катализаторы Ni3Sn/C и Ni3Ge/C. Способ приготовления первого из них позволяет наносить его на любую металлическую поверхность. Катализаторы обладают необходимой прочностью, термостойкостью и ресурсом работы, подтверждением чего являются эксперименты в трубчатом реакторе. Предварительные теоретические расчеты показали принципиальную возможность снятия тепловых потоков порядка 2-3 МВт/м2 с помощью данных реакций.
Таким образом, отличительными признаками предлагаемого способа охлаждения является то, что, во-первых, тепло снимается непосредственно с теплонапряженной поверхности за счет эндотермических каталитических реакций и, во-вторых, классом таких реакций могут быть паровая или углекислотная конверсия метана или паровая конверсия метанола.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ТЕПЛООТВОДА ИЗ ЗОНЫ ПОГЛОЩЕНИЯ ИЗЛУЧЕНИЯ ВЫСОКОЙ ПЛОТНОСТИ | 1991 |
|
RU2031703C1 |
КАТАЛИТИЧЕСКИЙ ГЕЛИОРЕАКТОР | 1991 |
|
RU2030694C1 |
КАТАЛИТИЧЕСКИЙ РЕАКТОР ДЛЯ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА | 2001 |
|
RU2208475C2 |
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ СМЕСИ ВОДОРОДА И ОКСИДА УГЛЕРОДА | 2001 |
|
RU2204434C2 |
СПОСОБ ДОБЫЧИ ПРИРОДНОГО ГАЗА ИЗ ГАЗОВЫХ ГИДРАТОВ | 2000 |
|
RU2169834C1 |
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА ПАРО-УГЛЕКИСЛОТНОЙ КОНВЕРСИЕЙ ПРИРОДНОГО ГАЗА | 2008 |
|
RU2379230C2 |
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ СИНТЕЗ-ГАЗА ПАРОВОЙ КОНВЕРСИЕЙ УГЛЕВОДОРОДОВ | 2001 |
|
RU2185239C1 |
КАТАЛИТИЧЕСКИЙ РЕАКТОР | 1992 |
|
RU2042421C1 |
КАТАЛИЗАТОР ДЛЯ ТЕРМОХИМИЧЕСКОЙ РЕКУПЕРАЦИИ ТЕПЛА В ГИБРИДНОЙ СИЛОВОЙ УСТАНОВКЕ | 2012 |
|
RU2496578C1 |
МЕТАЛЛУГЛЕРОДНЫЙ КАТАЛИЗАТОР | 1994 |
|
RU2096083C1 |
Использование: в энергетике, а именно в турбостроении для охлаждения теплонапряженных поверхностей газотурбинного двигателя. Сущность изобретения: осуществляется эффективное охлаждение теплонапряженных участков газотурбинной установки за счет проведения каталитических эндотермических реакций паровой или углекислотной конверсии метана и других углеводородных соединений на металлических поверхностях, тесно сопряженных с внутренней стенкой лопатки или другого температуронагруженного участка двигателя. 2 з. п. ф-лы.
Авторское свидетельство СССР N 409527, кл | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Приспособление для изготовления в грунте бетонных свай с употреблением обсадных труб | 1915 |
|
SU1981A1 |
Авторы
Даты
1996-04-10—Публикация
1992-02-04—Подача