СПОСОБ ПРОКАТКИ СТАЛИ Российский патент 1996 года по МПК B21B1/22 

Описание патента на изобретение RU2060847C1

Изобретение относится к черной металлургии, конкретно к прокатке, и может быть использовано для производства заготовок типа полос или прутков из малоуглеродистых низколегированных сталей с заданными механическими свойствами.

Известен способ производства проката из малоперлитной стали [1] включающий черновую прокатку, охлаждение проката в межклетьевом промежутке с регулированием температуры конца прокатки в зависимости от величины углеродного эквивалента прокатываемой стали и чистовую прокатку.

Известен также способ контролируемой прокатки толстого листа из низкоуглеродистой стали [2] включающий нагрев заготовки до заданной температуры аустенизации, черновую прокатку, охлаждение проката с заданной скоростью до температуры начала чистовой прокатки, устанавливаемой 730-690оС (температура межкритического интервала Аr1-Ar3), и чистовую прокатку по контролируемым режимам.

Целью изобретения является создание специальной структуры стали, обеспечивающей повышение эксплуатационных свойств изделий из нее с учетом характера прилагаемых рабочих нагрузок. К таким изделиям относятся элементы крепежа, например болты, шпильки, а также изделия из профильного проката (двутавры, швеллеры) и др.

Цель достигается способом прокатки стали, преимущественно малоуглеродистой, низколегированной, включающем нагрев заготовки до заданной температуры аустенизации. черновую прокатку, охлаждение проката с заданной скоростью до температуры межкритического интервала (Ar1-Ar3) и чистовую прокатку по контролируемым режимам, в котором в отличие от известного чистовую прокатку осуществляют со степенями деформации не менее 60% в температурном интервале 0,4Тпл-0,5Тпл, при этом охлаждение с температуры межкритического превращения (Ar1-Ar3) до температуры чистовой прокатки осуществляют произвольно.

Сущность способа заключается в создании определенной текстуры стали, когда зерна принимают иглообразную форму, располагаясь своей длинной осью вдоль направления прокатки, то есть ориентированы в аксиальном направлении.

В результате прочность материала в аксиальном направлении возрастает в 2-3 раза.

Рассмотрим поведение изделия, изготавливаемого из предлагаемой стали, в эксплуатации на примере болта. Продольная ось болта совпадает с направлением прокатки. Под влиянием внешних нагрузок болт в большинстве случаев работает на растяжение, а также на срез. В иглообразной структуре границы зерен в основном ориентированы вдоль продольной оси прутка (полосы), и, соответственно, перпендикулярно направлению возможной трещины (перпендикулярно нормальным напряжениям). Благодаря этому болт способен выдержать значительно более высокие (двух-трехкратные) нагрузки как на растяжение, так и на срез.

Получение игольчатой структуры становится возможным за счет подбора режимов чистовой прокатки. Известно, что при получении в результате деформации высоко ориентированных зеренных структур с определенным размером зерна с высокой плотностью дислокаций эти структуры остаются стабильными только тогда, когда сумма запасенной энергии деформации (накопленная в дислокационной субструктуре) и термической энергии (определяемой температурой деформации) будет ниже некоторого критического уровня. Если это условие не выполняется, деформированная микроструктура становится нестабильной и под влиянием вновь запасаемой, в основном термической, энергии начинается образование новых равноосных недеформированных зерен. Температурный порог динамической рекристаллизации составляет 0,5-0,6 Тпл. Исходя из этих соображений, температура прокатки выбрана ниже 0,5 Тпл, с целью избежания динамической рекристаллизации и сохранения неравноосности зерен после прокатки и выше 0,4 Тпл, чтобы материал сохранял пластичность достаточную для того, чтобы осуществить его прокатку со степенью ε не менее 60%
Если же условие энергетического баланса не выполняется, деформированная структура становится нестабильной и под влиянием вновь запасаемой энергии начинается формирование новых равноосных недеформированных зерен. В результате образуется новая стабильная структура, не обладающая требуемой анизотропностью зерен.

С увеличением степени деформации энергия накапливается в дислокационной субструктуре, вызывая явление наклепа по границам зерен: с повышением температуры благодаря процессам возраста наклеп снимается; с понижением температуры степень наклепа увеличивается и может произойти разрушение образца.

В предлагаемом способе прокатки найдено такое сочетание режимов, а именно степени деформации ε и температуры Т, когда энергия, накапливаемая в дислокационной субструктуре, приводит к стабильности благодаря увеличению протяженности границ зерен. Как примечание можно отметить, что при других схемах деформации, например экструзии при том же сочетании Т и ε, происходит увеличение протяженности границ за счет измельчения зерна.

Степень деформации ниже 60% не приводит к получению оптимальной игольчатой структуры. При ε<60% зерно вытягивается, однако границы зерен в продольном сечении нечетко выражены, и поставленная задача, заключающаяся в создании специальной структуры, приспособленной к условиям эксплуатации, может быть не решена.

Охлаждение проката с температуры черновой прокатки до температуры межкритического превращения (Ar1-Ar3) необходимо осуществлять регламентированно.

Регулирование температуры может осуществляться одним из известных способов [1, 2]
При более низкой температуре в стали не происходит фазовых превращений, поэтому охлаждение с температуры чистовой прокатки можно осуществлять произвольно.

П р и м е р. Заготовку из стали ОЗХГСФ диаметром 40 мм и длиной 200 мм прокатывали при 950оС на 20% за два прохода, охлаждали до температуры чистовой прокатки, проводили прокатку с различной степенью деформации при различных температурах (таблица). Из полученных прутков вырезали стандартные гагаринские образцы для механических испытаний.

Результаты механических испытаний также приведены в таблице. Из таблицы видно, что снижение температуры прокатки ниже 500оС приводит к резкому снижению пластичности (σ ).

Повышение температуры прокатки выше 600оС приводит к сильному снижению прочностных характеристик σ0,2в. Прокатка в интервале температур 500-600оС со степенью деформации менее 60% приводит к снижению прочности σ0,2в.

Таким образом, выход за пределы параметров деформации не приводит к достижению высокого уровня механических свойств.

Похожие патенты RU2060847C1

название год авторы номер документа
СПОСОБ ОБРАБОТКИ СТАЛЕЙ 2000
  • Зарипова Р.Г.
  • Кайбышев О.А.
  • Салищев Г.А.
  • Фархутдинов К.Г.
RU2181776C2
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО НИЗКОЛЕГИРОВАННОГО ШТРИПСА 2009
  • Немтинов Александр Анатольевич
  • Скорохватов Николай Борисович
  • Емельянов Александр Матвеевич
  • Ордин Владимир Георгиевич
  • Корчагин Андрей Михайлович
  • Тихонов Сергей Михайлович
  • Цветков Дмитрий Сергеевич
  • Попова Светлана Дмитриевна
  • Румянцев Александр Васильевич
RU2393238C1
СПОСОБ ИЗГОТОВЛЕНИЯ СТАЛЬНЫХ ЛИСТОВ ИЗ НИЗКОЛЕГИРОВАННЫХ И УГЛЕРОДИСТЫХ МАРОК СТАЛИ, ПРЕДНАЗНАЧЕННЫХ ДЛЯ ПРОИЗВОДСТВА СОСУДОВ 2005
  • Стольный Виктор Иванович
  • Бережко Борис Иванович
  • Капустин Александр Игоревич
  • Голубев Дмитрий Анатольевич
  • Островский Владимир Наумович
RU2311465C2
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО ПРОКАТА ДЛЯ СУДОСТРОЕНИЯ 2013
  • Скорохватов Николай Борисович
  • Емельянов Александр Матвеевич
  • Корчагин Андрей Михайлович
  • Томин Александр Александрович
  • Сабреев Дмитрий Валерьевич
  • Тихонов Сергей Михайлович
RU2530078C1
СПОСОБ ПРИЗВОДСТВА ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ ТОЛСТОЛИСТОВОЙ СТАЛИ 2013
  • Корчагин Андрей Михайлович
  • Мишнев Петр Александрович
  • Сахаров Максим Сергеевич
  • Цветков Дмитрий Сергеевич
  • Попова Светлана Дмитриевна
  • Матросов Максим Юрьевич
  • Тазов Максим Федорович
RU2532768C1
Способ производства низколегированного рулонного проката категории прочности С390П 2021
  • Юлов Владимир Николаевич
  • Глухов Павел Александрович
  • Мезин Филипп Иосифович
  • Комиссаров Александр Александрович
  • Тихонов Сергей Михайлович
  • Кузнецов Денис Валерьевич
  • Матросов Максим Юрьевич
  • Шульга Екатерина Викторовна
  • Пехотиков Андрей Владимирович
RU2781928C1
Способ производства толстолистового проката классов прочности K80, X100, L690 для изготовления электросварных труб магистральных трубопроводов 2017
  • Рингинен Дмитрий Александрович
  • Головин Сергей Викторович
  • Эфрон Леонид Иосифович
  • Частухин Андрей Владимирович
  • Ильинский Вячеслав Игоревич
  • Червонный Алексей Владимирович
RU2635122C1
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО НИЗКОЛЕГИРОВАННОГО ШТРИПСА 2009
  • Немтинов Александр Анатольевич
  • Скорохватов Николай Борисович
  • Емельянов Александр Матвеевич
  • Клюквин Михаил Борисович
  • Корчагин Андрей Михайлович
  • Тихонов Сергей Михайлович
  • Шаталов Сергей Викторович
  • Голованов Александр Васильевич
RU2393239C1
Способ производства низколегированного толстолистового проката с повышенной огнестойкостью на реверсивном стане 2022
  • Юлов Владимир Николаевич
  • Глухов Павел Александрович
  • Мезин Филипп Иосифович
  • Комиссаров Александр Александрович
  • Тихонов Сергей Михайлович
  • Кузнецов Денис Валерьевич
  • Матросов Максим Юрьевич
  • Шульга Екатерина Викторовна
  • Тен Денис Васильевич
RU2799194C1
СПОСОБ ПРОИЗВОДСТВА ТОЛСТОЛИСТОВОГО НИЗКОЛЕГИРОВАННОГО ШТРИПСА 2009
  • Немтинов Александр Анатольевич
  • Скорохватов Николай Борисович
  • Клюквин Михаил Борисович
  • Корчагин Андрей Михайлович
  • Тихонов Сергей Михайлович
  • Голованов Александр Васильевич
RU2390568C1

Иллюстрации к изобретению RU 2 060 847 C1

Реферат патента 1996 года СПОСОБ ПРОКАТКИ СТАЛИ

Использование: создание специальной структуры стали при прокатке, обеспечивающей повышение эксплуатационных свойств изделий из нее с учетом характера прилагаемых рабочих нагрузок. К таким изделиям относятся элементы крепежа, например болты, шпильки, а также изделия из профильного проката (двутавры, швеллеры) и др. Сущность: при прокатке стали, преимущественно малоуглеродистой, низколегированной, включающей нагрев заготовки до заданной температуры аустенизации, черновую прокатку, охлаждение проката с заданной скоростью до температуры межкритического интервала (Аr1 - Аr3) и чистовую прокатку по контролируемым режимам, чистовую прокатку осуществляют со степенями деформации не менее 60% в температурном интервале 0,4 Tпл - 0,5 Tпл, при этом охлаждение с температуры межкритического превращения (Аr1 - Аr3) до температуры чистовой прокатки осуществляют произвольно. 1 табл.

Формула изобретения RU 2 060 847 C1

Способ прокатки стали, преимущественно малоуглеродистой, включающий нагрев заготовки до заданной температуры аустенизации, черновую прокатку, охлаждение проката с заданной скоростью до температуры межкритического интервала (Аr1 Аr3) и чистовую прокатку по контролируемым режимам, отличающийся тем, что чистовую прокатку осуществляют со степенями деформации не менее 60% в температурном интервале 0,4 0,5 Tпл, где Tпл температура плавления стали, при этом охлаждение с температуры межкритического интервала до температуры чистовой прокатки осуществляют произвольно.

Документы, цитированные в отчете о поиске Патент 1996 года RU2060847C1

Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Способ производства проката из малоперлитной стали 1987
  • Цзян Шао-Цзя
  • Локшин Александр Борисович
  • Зорин Виктор Николаевич
  • Батулин Дмитрий Васильевич
  • Пенов Игорь Феликсович
  • Каневский Александр Львович
  • Казачкова Марина Евгеньевна
SU1421430A1
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1
Аппарат для очищения воды при помощи химических реактивов 1917
  • Гордон И.Д.
SU2A1
Способ контролируемой прокатки толстого листа 1985
  • Гоцуляк Анатолий Александрович
  • Руднев Анатолий Ефимович
  • Локшин Александр Борисович
  • Щербак Владимир Михайлович
  • Казачкова Марина Евгеньевна
  • Голобоков Виктор Сергеевич
SU1390245A1
Выбрасывающий ячеистый аппарат для рядовых сеялок 1922
  • Лапинский(-Ая Б.
  • Лапинский(-Ая Ю.
SU21A1

RU 2 060 847 C1

Авторы

Корзников А.В.

Сафаров И.М.

Валиев Р.З.

Пышминцев И.Ю.

Емельянов А.А.

Даты

1996-05-27Публикация

1993-01-11Подача