СПОСОБ ПОЛУЧЕНИЯ ТОНКИХ ПЛЕНОК АМОРФНОГО ГИДРОГЕНИЗИРОВАННОГО КРЕМНИЯ Российский патент 1996 года по МПК H01L21/205 

Описание патента на изобретение RU2061281C1

Изобретение может быть использовано в технологии полупроводниковых приборов на основе тонких пленок аморфного гидрогенизированного кремния.

Известен способ получения пленки из фторсодержащих газовых смесей [1] который заключается в разложении газовой смеси SiH3F с инертным газом (Ar, He) в высокочастотном тлеющем разряде. Способ позволяет значительно повысить термическую стабильность осаждаемой пленки и улучшить ее адгезионные свойства. Недостатком данного способа является его значительный вред с точки зрения экологии. Данный недостаток обусловлен тем, что использование в качестве исходных реагентов газообразных фторсодержащих веществ (фреонов) приводит к разрушительному воздействию газообразных продуктов реакции, попадающих в атмосферу, на озоновый слой Земли [1]
Традиционный способ улучшения стабильности, заключающийся в уменьшении мощности ВЧ-разряда, не приемлем с точки зрения технологии, так как при этом резко уменьшается скорость роста пленки [2]
Известен также способ, заключающийся в использовании газовых смесей SiH4 + +H2 + B2H6. Указанный способ позволяет снизить эффект Стеблера Вронского и несколько улучшить качество адгезии. Однако применение диборана В2Н6 является не удовлетворительным c точки зрения производственной безопасности, так как значительная токсичность вышеуказанного газа требует наличия эффективных средств утилизации продуктов реакции. Кроме того, термическая стабильность получаемых таким образом пленок улучшается незначительно [3,4]
Наиболее близким по технической сущности является способ получения тонких пленок аморфного гидрогенизированного кремния (а-Si:H) методом тлеющего разряда [5] Способ заключается в разложении силаносодержащей смеси SiH4 + H2, либо SiH4 + +Ar в высокочастотном тлеющем разряде. Однако полученные таким образом пленки характеризуются значительной деградацией свойств пленки во времени, а также слабой адгезией за счет релаксации структуры материала.

Задачей изобретения является повышение термической стабильности структуры и свойств тонких пленок аморфного гидрогенизированного кремния.

Технический результат достигается за счет того, что в способе получения тонких пленок аморфного гидрогенизированного кремния, заключающемся в осаждении методом разложения смеси моносилана и водорода в плазме высокочастотного тлеющего разряда, в исходную газовую смесь добавляется газообразный аммиак в количестве 1-4 объемных процентов.

Технических решений, совокупность существенных признаков которых совпадает с предложенным решением, не обнаружено. Таким образом, данное решение отвечает требованию новизны.

Использование аммиака NH3 в технологии обычно связано с получением диэлектрических пленок Si3N4. В то же время в заявляемом решении добавка аммиака применена для повышения термической стабильности полупроводникового материала без ухудшения его электрофизических свойств. Таким образом, применение добавок аммиака в заявляемом решении направлено на выполнение новой для него функции, не вытекающей с очевидностью из его известных свойств. Поэтому можно сделать вывод о соответствии заявляемого решения критерию изобретательского уровня.

Использование регулируемого в пределах 1-4 объемных процентов содержания аммиака позволяет получить при реализации заявляемого изобретения пленку со стабильными электрофизическими и структурными характеристиками, а также с высокой адгезионной способностью, при этом не возникает экологических проблем, связанных с использованием в технологии фторсодержащих веществ. Это обусловлено тем, что добавление в процессе роста пленки в газовую фазу соответствующего количества аммиака ведет к образованию в пленке метастабильных состояний типа Si-3

, термодинамически более устойчивых. Кроме того, улучшается однородность структуры пленки вследствие заращивания межзеренных границ при образовании связей Si-N.

При большем давлении аммиака в газовой фазе, чем 2 Па, наблюдается значительное уменьшение проводимости полученного материала. Это связано со сменой механизма роста пленки с образованием нитридных комплексов, соответствующих нестехиометрическому нитриду кремния. При давлении аммиака в газовой фазе меньше 0,5 Па пленка остается термически нестабильной и значительно изменяет проводимость при термообработках.

Примеры конкретного выполнения изобретения.

Заявляемый способ получения тонких пленок аморфного гидрогенизированного кремния включает осаждение пленки путем разложения газовой смеси в плазме высокочастотного тлеющего разряда.

Процесс осаждения производился в реакторе промышленного типа УВП-4АМ. В качестве подложек использовали пластины монокристаллического кремния марок КДБ-10, КЭФ-0,01, КЭС-0,01, а также а-кварц и стекло. Реакционную камеру откачивали до давления 10-1 Па, затем подложки нагревали до температуры 220оС в течение 40 мин, после чего в камеру подавали аммиак при различных давлениях (0,5-2 Па, что соответствует 1-4 об.), а затем смесь моносилана и водорода (10% SiH4 + 90% H2) до общего давления 50 Па, после этого возбуждали плазму и производили осаждение. При большем давлении аммиака в газовой фазе, чем 2 Па, наблюдалось значительное уменьшение проводимости полученного материала. Это связано со сменой механизма роста пленки с образованием нитридных комплексов, соответствующих нестехиометрическому нитриду кремния. При давлении аммиака в газовой фазе меньше 0,5 Па пленка оставалась термически нестабильной и значительно изменяла проводимость при термообработках. Удельная мощность ВЧ-разряда составляла 0,3 Вт/см2. При меньшей мощности значительно снижалась скорость осаждения, а увеличение мощности по сравнению с выбранной величиной вела к инициации реакций травления и увеличению дефектности. По окончании осаждения в той же камере проводили термообработку пленок в вакууме при давлении 10-1 Па и температуре подложек 220оС в течение 30 мин для устранения неравновесных дефектов, возникающих в процессе осаждения.

Наиболее характерным электрофизическим свойством материала являлась его проводимость. В качестве критерия термической стабильности материала оценивали величину изменения темновой проводимости материала, измеренной при комнатной температуре ( σ300), до и после термообработок.

Определение темновой проводимости полученных образцов проводилось путем измерения вольт-амперных характеристик тестовых структур. С этой целью на поверхность полученных пленок наносили алюминиевые контакты через соответствующий трафарет. Часть полученных таким образом образцов подвергали термической обработке в вакууме при температурах 220оС и 280оС, давлении 10-1 Па в течение 30 мин.

Для определения темновой проводимости полученных образцов на две соседних контактных площадки, зазор между которыми составлял 0,6 мм, подавали постоянное напряжение в диапазоне 1,5-15 В с шагом 1,5 В от батарей питания. Ток, протекающий через образец, измеряли с помощью прибора В7-45. В вышеуказанном диапазоне напряжений ВАХ исследуемых структур имела линейный характер, что позволяет, зная геометрию структур вычислить проводимость пленки.

Результаты исследования темновой проводимости в пленках с различной концентрацией азота приведены в табл. 1.

Данные о плотности дефектов в пленках, полученных методом постоянного фототока, приведены в табл. 2.

Результаты исследования плотности связей методом ИК-спектроскопии в пленках, полученных по предложенному способу, приведены в табл. 3.

Известно, что при температуре ниже 300оС стабильность аморфного гидрогенизированного кремния определяется процессами релаксации структуры материала. Исследование нелегированных пленок методом ИК-спектроскопии показало, что они имеют ярко выраженную зернистую, так называемую колонную структуру, т. е. состоят из образованных кремниевыми связями зерен колонн, разделенных промежутками, в которых содержится значительное количество водорода [6] При термообработках до 300оС происходит интенсивная диффузия водорода из межзеренного пространства в приповерхностную область зерен, где связи кремния ослаблены деформационными напряжениями. При этом происходит разрыв слабых связей Si-Si и терминация образовавшихся нейтральных дефектов водородом. Добавление NH3 приводит к подавлению механизма образования колонной структуры, что объясняет уменьшение содержания водорода в пленке. Вследствие этого материал становится более однородным, чем объясняется улучшение адгезионных свойств. В процессе структурной перестройки материала происходит уменьшение слабых связей Si-Si и образование парных состояний типа Si-3

-N+4
при встраивании атомов азота в решетку кремния. Такие метастабильные состояния термодинамически более устойчивы. Этим объясняется повышение проводимости и термической стабильности пленок.

Использование способа согласно описываемому изобретению позволит на основе существующей технологии существенно упростить и удешевить производство тонких пленок а-Si:H высокого качества, избегая при этом экологических проблем.

Похожие патенты RU2061281C1

название год авторы номер документа
ДАТЧИК ИК ИЗЛУЧЕНИЯ 1995
  • Будагян Б.Г.
  • Айвазов А.А.
  • Шерченков А.А.
  • Филатова И.В.
RU2083030C1
СПОСОБ ПОЛУЧЕНИЯ ПЛЕНОК АМОРФНОГО КРЕМНИЯ, СОДЕРЖАЩЕГО НАНОКРИСТАЛЛИЧЕСКИЕ ВКЛЮЧЕНИЯ 2012
  • Кашкаров Павел Константинович
  • Казанский Андрей Георгиевич
  • Форш Павел Анатольевич
  • Жигунов Денис Михайлович
RU2536775C2
СПОСОБ ФОРМИРОВАНИЯ УПОРЯДОЧЕННОГО МАССИВА НАНОКРИСТАЛЛОВ ИЛИ НАНОКЛАСТЕРОВ КРЕМНИЯ В ДИЭЛЕКТРИЧЕСКОЙ МАТРИЦЕ 2017
  • Жигунов Денис Михайлович
  • Каменских Ирина Александровна
  • Попов Александр Афанасьевич
RU2692406C2
СПОСОБ ПОЛУЧЕНИЯ ПЛЕНКИ АМОРФНОГО ГИДРОГЕНИЗИРОВАННОГО КРЕМНИЯ 2000
  • Бердников А.Е.
  • Черномордик В.Д.
  • Попов А.А.
  • Будагян Б.Г.
  • Шерченков А.А.
RU2168795C1
СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ЛЕГИРОВАНИЯ И ИЗМЕНЕНИЯ ТИПА ПРОВОДИМОСТИ АМОРФНОГО ГИДРОГЕНИЗИРОВАННОГО КРЕМНИЯ, СЛАБО ЛЕГИРОВАННОГО АКЦЕПТОРНЫМИ ПРИМЕСЯМИ 2016
  • Кашкаров Павел Константинович
  • Казанский Андрей Георгиевич
  • Форш Павел Анатольевич
  • Жигунов Денис Михайлович
RU2660220C2
Способ получения активной структуры элемента энергонезависимой резистивной памяти 2020
  • Камаев Геннадий Николаевич
  • Гисматуллин Андрей Андреевич
  • Володин Владимир Алексеевич
  • Гриценко Владимир Алексеевич
RU2749028C1
РЕАКТОР ДЛЯ ОБРАБОТКИ ПОДЛОЖЕК В ПЛАЗМЕ СВЧ-ТЛЕЮЩЕГО РАЗРЯДА 1993
  • Неустроев С.А.
RU2073933C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ТОНКОЙ ПОЛУПРОВОДНИКОВОЙ ПЛЕНКИ 1998
  • Китагава Масатоши
  • Йошида Акихиса
  • Шибуя Мунехиро
  • Сугаи Хидео
RU2189663C2
СПОСОБ СВЧ ПЛАЗМЕННОГО ФОРМИРОВАНИЯ ПЛЕНОК КУБИЧЕСКОГО КАРБИДА КРЕМНИЯ НА КРЕМНИИ (3С-SiC) 2013
  • Аристов Виталий Васильевич
  • Мальцев Петр Павлович
  • Редькин Сергей Викторович
  • Федоров Юрий Владимирович
RU2538358C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ КОМПОНЕНТОВ СВЧ-МОЩНЫХ ТРАНЗИСТОРНЫХ МИКРОСБОРОК 1991
  • Гаганов В.В.
  • Жильцов В.И.
  • Пожидаев А.В.
  • Попова Т.С.
RU2017271C1

Иллюстрации к изобретению RU 2 061 281 C1

Реферат патента 1996 года СПОСОБ ПОЛУЧЕНИЯ ТОНКИХ ПЛЕНОК АМОРФНОГО ГИДРОГЕНИЗИРОВАННОГО КРЕМНИЯ

Использование: технология полупроводниковых приборов на основе тонких пленок аморфного кремния. Сущность изобретения: способ получения тонких пленок аморфного гидрогенизированного кремния включает осаждение пленки на нагретую подложку путем разложения газовой смеси, содержащей моносилан, водород и газообразный аммиак, в высокочастотной плазме тлеющего разряда, количество аммиака в смеси 1 - 4 объемных процента. Способ позволяет получить пленки с термически стабильными электрофизическими и структурными характеристиками, а также с высокой адгезионной способностью.

Формула изобретения RU 2 061 281 C1

Способ получения тонких пленок аморфного гидрогенизированного кремния, включающий осаждение пленки на нагретую подложку путем разложения газовой смеси моносилана и водорода в высокочастотной плазме тлеющего разряда, отличающийся тем, что осаждение пленки проводят из газовой смеси, дополнительно содержащей газообразный аммиак в количестве 1 4 об.

Документы, цитированные в отчете о поиске Патент 1996 года RU2061281C1

Патент США N 4762808, кл
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Механическая топочная решетка с наклонными частью подвижными, частью неподвижными колосниковыми элементами 1917
  • Р.К. Каблиц
SU1988A1
Kuznetsov V., van Oort R.C
and Metselaar J.W
Plasma deposition of hydrogenated amorphous silicon
Effectof rf power
/J
Appl
Phys
Разборное приспособление для накатки на рельсы сошедших с них колес подвижного состава 1920
  • Манаров М.М.
SU65A1
СПОСОБ ПОВЫШЕНИЯ АКТИВНОСТИ ГЕРБИЦИДОВ-ЭФИРОВ 2,4 Д 0
  • Ю. В. Щеглов, А. Ф. Коломиец, А. Н. Касихин, Н. К. Близнюк,
  • О. Д. Микитюк, Р. В. Стрельцов, Ю. Н. Фадеев, Г. П. Куликов,
  • А. Н. Прокофьев А. В. Воеводин
  • Всесоюзный Научно Исследовательский Институт Фитопатологии
SU181113A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Пневматический водоподъемный аппарат-двигатель 1917
  • Кочубей М.П.
SU1986A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
Механическая топочная решетка с наклонными частью подвижными, частью неподвижными колосниковыми элементами 1917
  • Р.К. Каблиц
SU1988A1
M
Petrich, Chemtech N 12 /1989/, p
КОЛЕНЧАТЫЙ ВАЛ С ДИФФЕРЕНЦИАЛЬНОЙ ПЕРЕДАЧЕЙ 1923
  • Аллей С.И.
  • Вудвайн Д.
SU742A1

RU 2 061 281 C1

Авторы

Айвазов А.А.

Будагян Б.Г.

Сазонов А.Ю.

Приходько Е.Л.

Даты

1996-05-27Публикация

1993-02-04Подача