СПОСОБ АНАЛИЗА ОСТАТОЧНЫХ ГАЗОВ И ПАРОВ ВЕЩЕСТВ В ВАКУУМЕ Российский патент 1996 года по МПК H01J49/40 G01N30/72 

Описание патента на изобретение RU2063091C1

Изобретение относится к методам контроля газов и паров веществ, в частности к способам анализа газов и паров веществ в вакууме по массовым числам.

Среди методов контроля веществ и материалов известны способы косвенного анализа веществ в вакууме по массовым числам и парциальному составу с использованием комплекса методов масс-спектрометрии.

Использование масс-спектрометрии позволяет получить спектры масс, соответствующие парциальному составу остаточных газов [1] Спектры масс представляют собой практически линейчатый спектр давлений, на котором "палочки" на оси молекулярных масс определяют род газа, а высота парциальное давление.

Главный недостаток масс-спектрометрического метода заключается в том, что разделению подвергаются ионы, а не исходные молекулы вещества. Получение ионов из молекул (ионизация) сопровождается разрушением последних и поэтому в спектрах масс присутствуют пики различных осколков молекул, которые "засоряют" спектр масс и не позволяют, особенно в случае больших молекул, сделать заключение по спектру о том, какое вещество или смесь веществ анализируется. Это снижает достоверность метода и усложняет интерпретацию полученных в результате анализа спектров масс.

Наиболее близким техническим решением прототипом заявляемого изобретения является способ анализа газов и паров веществ в вакууме методом времяпролетной масс-спектрометрии [2]
Этот способ позволяет проводить анализ газов и паров по массовым числам в вакууме. Способ включает ионизацию молекул в ионизационной камере, извлечение ионов из ионизационной камеры импульсами напряжения в ускоряющее электрическое поле и направление их в пространство дрейфа. В пространстве дрейфа ионы разделяются по массам, т.к. скорость ионов зависит от их массы, и на коллектор ионы различных газов поступают в разное время. На коллекторе регистрируют амплитуду сигнала в зависимости от времени, на основании чего делают вывод о составе анализируемых газов и паров.

Однако полученная зависимость представляет собой спектр масс, в котором присутствуют не только пики, соответствующие по массе исходным молекулам, но и пики, соответствующие осколкам этих молекул, которые неизбежно образуются в процессе ионизации, причем количество этих осколков тем больше, чем больше энергия ионизирующих электронов и чем выше температура катода источника ионизирующих электронов. Для уменьшения вероятности разрыва внутримолекулярных связей в молекулах анализируемого вещества, для получения электронов используют низкотемпературные катоды, уменьшают энергию электронов или используют для ионизации фотоны (фотоионизацию), имеющие энергию, близкую к энергии отрыва электрона от молекулы, но недостаточную для разрыва самой молекулы.

Таким образом, известный способ имеет следующие недостатки: во-первых, низкая достоверность получаемых результатов вследствие того, что в спектре масс присутствуют пики от осколков ионизированных молекул газов; во-вторых, сложность реализации способа, связанная с тем, что необходимо ионизировать молекулы анализируемого газа.

Целью изобретения является повышение достоверности и упрощение анализа остаточных газов и паров веществ в вакууме.

Цель достигается тем, что в известном способе, включающем подачу анализируемого газа порциями с некоторой скоростью в пространство дрейфа, измерение времени пролета частиц через пространство дрейфа и определение массовых чисел газов и паров, до подачи в пространство дрейфа анализируемый газ нагревают, а массовые числа определяют по формуле
M=K•T/l2τ2м

(1),: (1),
где M молекулярный вес, а.е.м.

l длина зоны дрейфа, м;
T температура анализируемого газа, К;
К 1,66•104 коэффициент пропорциональности;
τм время нахождения молекул в зоне дрейфа, c.

Способ повышает достоверность испытаний, т.к. при нагревании анализируемых газов и паров не происходит разрыва молекулярных связей и датчик регистрирующего устройства поочередно фиксирует молекулы анализируемых веществ.

Способ прост в реализации, т.к. исключает необходимость ионизации анализируемых газов и связанной с этим аппаратуры.

Анализируемый газ нагревают, фиксируют его температуру и импульсами (например путем открытия какой-либо заслонки) в определенное время подают в пространство дрейфа. Затем фиксируют время поступления молекул на регистрирующее устройство и (зная температуру анализируемого газа, расстояние от источника потока газа до регистрирующего устройства) определяют массовое число компонент в исследуемой смеси газов по формуле (1).

Сопоставительный анализ изобретения с прототипом показывает, что данный способ отличается от известного тем, что разгон молекул анализируемого газа перед подачей в пространство дрейфа осуществляется путем его нагревания. Кроме того, определение молекулярной массы проводят по формуле (1). Таким образом, изобретение соответствует критерию "новизна". Сравнение изобретения с другими техническими решениями в данной области техники не выявило таких технических решений, в которых бы операции, отличающие изобретение от прототипа, вводились бы с целью повышения достоверности и упрощения анализа остаточных газов и паров в вакууме. Таким образом, изобретение соответствует критерию "существенные отличия".

Пример анализа остаточных газов и паров.

Анализируемую смесь подают в вакуумную камеру (P=10-4 Па), в которой ее нагревают до температуры 400 К и направляют в виде импульса в зону дрейфа, имеющую протяженность 0,5 м. Молекулы с разной молекулярной массой, имеющие одинаковую температуру, двигаются через зону дрейфа с разными скоростями. Благодаря этому происходит их пространственное разделение и они достигают коллектора регистрирующего устройства в разное время. Время поступления молекул на коллектор фиксируется с помощью регистрирующего устройства. В конкретном примере использования изобретения время прохождения зоны дрейфа для одной компоненты составило 1,948•10-3 с, а для другой 1,938•10-3 с. По формуле (1) определяем, что молекулярная масса одной компоненты М=100, а другой М=101.

Таким образом, введение в предлагаемый способ операции нагрева анализируемого газа или пара и определение массовых чисел по формуле (1) позволяет повысить достоверность анализа, а замена ионизации анализируемого газа нагреванием позволяет также существенно упростить способ.

Похожие патенты RU2063091C1

название год авторы номер документа
СПОСОБ МАСС-СПЕКТРОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ХИМИЧЕСКИХ СОЕДИНЕНИЙ 2015
  • Гречников Александр Анатольевич
  • Бородков Алексей Сергеевич
  • Никифоров Сергей Михайлович
  • Симановский Ярослав Олегович
  • Алимпиев Сергей Сергеевич
RU2599330C1
СПОСОБ ИДЕНТИФИКАЦИИ ФОСФОРОРГАНИЧЕСКИХ СОЕДИНЕНИЙ МЕТОДОМ ХРОМАТО-МАСС-СПЕКТРОМЕТРИИ С ЦИЛИНДРИЧЕСКОЙ ИОННОЙ ЛОВУШКОЙ 2020
  • Брагинец Анатолий Андреевич
  • Жохов Александр Константинович
  • Дымнич Сергей Анатольевич
  • Бойко Андрей Юрьевич
  • Фоменко Павел Викторович
  • Лоскутов Анатолий Юрьевич
  • Ковалева Светлана Валериевна
  • Орлов Евгений Дмитриевич
RU2741955C1
Способ исследования биологической пробы с поверхности кожи 1990
  • Маркелов Игорь Михайлович
  • Цыбин Олег Юрьевич
  • Цыбина Маргарита Львовна
SU1772745A1
СПОСОБ ИДЕНТИФИКАЦИИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ НА ОСНОВЕ МЕТОДА ВЫСОКОЭФФЕКТИВНОЙ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ И МАСС-СПЕКТРОМЕТРИИ 2011
  • Полякова Галина Юрьевна
  • Каземирова Марина Александровна
  • Арабская Марина Александровна
  • Повалихин Анатолий Павлович
  • Лоскутов Анатолий Юрьевич
  • Фоменко Павел Викторович
  • Копнев Дмитрий Евгеньевич
RU2469314C2
СПОСОБ ПОЛУЧЕНИЯ БИОМОЛЕКУЛЯРНЫХ ИОНОВ В СВОБОДНОМ СОСТОЯНИИ 2003
  • Баранов И.А.
  • Кириллов С.Н.
  • Обнорский В.В.
  • Ярмийчук С.В.
  • Хаканссон Пер
  • Новиков А.К.
RU2238561C1
СПОСОБ ИДЕНТИФИКАЦИИ АТОМОВ И МОЛЕКУЛ 2010
  • Капустин Владимир Иванович
RU2444730C1
СПЕКТРОМЕТР ПОДВИЖНОСТИ ИОНОВ 2001
  • Мацаев В.Т.
  • Чилипенко Л.Л.
  • Козлов Н.Н.
RU2216817C2
СПОСОБ СТРУКТУРНО-ХИМИЧЕСКОГО АНАЛИЗА ОРГАНИЧЕСКИХ И БИООРГАНИЧЕСКИХ СОЕДИНЕНИЙ ПРИ РАЗДЕЛЕНИИ ИОНОВ ЭТИХ СОЕДИНЕНИЙ В СВЕРХЗВУКОВОМ ГАЗОВОМ ПОТОКЕ, НАПРАВЛЕННОМ ВДОЛЬ ЛИНЕЙНОЙ РАДИОЧАСТОТНОЙ ЛОВУШКИ 2010
  • Разников Валерий Владиславович
  • Зеленов Владислав Валерьевич
  • Разникова Марина Олеговна
  • Пихтелев Александр Робертович
  • Сулименков Илья Вячеславович
RU2420826C1
Способ масс-спектрометрического анализа газовой смеси 1983
  • Ревельский И.А.
  • Яшин Ю.С.
  • Вознесенский В.Н.
  • Курочкин В.К.
  • Костяновский Р.Г.
SU1159412A1
СПОСОБ БЕССТАНДАРТНОЙ ОЦЕНКИ КОЛИЧЕСТВА ФОСФОРОРГАНИЧЕСКОГО ВЕЩЕСТВА В ПРОБЕ 2015
  • Жохов Александр Константинович
  • Брагинец Анатолий Андреевич
  • Фоменко Павел Викторович
  • Полякова Галина Юрьевна
  • Лоскутов Анатолий Юрьевич
  • Белоусов Евгений Борисович
RU2610558C1

Реферат патента 1996 года СПОСОБ АНАЛИЗА ОСТАТОЧНЫХ ГАЗОВ И ПАРОВ ВЕЩЕСТВ В ВАКУУМЕ

Использование: изобретение относится к методам контроля газов и паров веществ в вакууме по массовым числам. Сущность изобретения: анализируемый газ нагревают, порциями подают в пространство дрейфа в виде нейтральных частиц, регистрируют время пролета частиц через пространство дрейфа и определяют массовые числа по формуле: M=K•T/l2τ2м

, где M - молекулярный вес, а.е.м. ; l - длина зоны дрейфа, м; T - температура анализируемого газа, K, K - 1,66<195>10<M^ >4<D> - коэффициент пропорциональности; τм - время нахождения молекул в зоне дрейфа, с.

Формула изобретения RU 2 063 091 C1

Способ анализа остаточных газов и паров веществ в вакууме, заключающийся в том, что анализируемый газ порциями подают в пространство дрейфа, регистрируют время пролета частиц через пространство дрейфа и определяют массовые числа остаточных газов и паров веществ, отличающийся тем, что, с целью повышения достоверности анализа, анализируемый газ до подачи в пространство дрейфа нагревают, в пространство дрейфа подают нейтральные частицы, а массовые числа определяют по формуле

где М молекулярная масса;
l длина зоны дрейфа, м;
Т температура анализируемого газа, К; К 1,66•104 - коэффициент пропорциональности;
τм- время нахождения молекул в зоне дрейфа, с.

Документы, цитированные в отчете о поиске Патент 1996 года RU2063091C1

Грошковский Я
Технология высокого вакуума
- М.: Мир, 1975, с
Стрелочный контрольный замок 1924
  • Федотов В.А.
SU422A1
Там же, с
Способ получения твердых неплавких и нерастворимых продуктов уплотнения формальдегида с фонолами 1925
  • Тарасов К.И.
SU435A1
Сыcоев А.А., Чупахин М.С
Введение в масс-спектрометрию
- М.: Атомиздат, 1977, c
Приспособление для записи звуковых явлений на светочувствительной поверхности 1919
  • Ежов И.Ф.
SU101A1

RU 2 063 091 C1

Авторы

Маркелов В.В.

Даты

1996-06-27Публикация

1991-04-16Подача