Изобретение относится к электронной технике и может быть использовано в фотоэнергетике, преимущественно в солнечных элементах для концентрированного излучения.
Известно [1] что стоимость солнечных батарей можно существенно снизить, если использовать концентраторы солнечного излучения. В этом случае площадь солнечного элемента уменьшается пропорционально степени концентрации излучения, при этом соответственно возрастает удельная мощность преобразуемого элементом солнечного излучения. И если в обычных солнечных элементах большое внимание уделяется обеспечению малых шунтирующих токов, то в солнечных элементах для работы с концентраторами излучения первостепенное значение имеет минимально возможное последовательное сопротивление солнечного элемента, которое в основном складывается из переходного сопротивления между металлической контактной сеткой и полупроводником и сопротивлением контактной сетки.
Известны омические контакты для кремниевых солнечных элементов системы титан палладий серебро [2,3] Такие контакты применяются в основном для солнечных элементов космического назначения, где стоимость не является решающим фактором.
Для наземных солнечных элементов более целесообразно использовать омические контакты на основе неблагородных металлов, например многослойную систему, состоящую из последовательно расположенных слоев силицида никеля, никеля и оловосодержащего припоя [4]
Несмотря на низкое переходное сопротивление, известная контактная система не эффективна в солнечных элементах для концентрированного излучения из-за высокого сопротивления проводящего слоя никеля.
В заявляемом омическом контакте к кремниевому солнечному элементу, включающему последовательно расположенные слои силицида никеля, никеля и оловосодержащего припоя, на слое никеля дополнительно расположен слой меди толщиной 3 8 мкм.
На чертеже показан предложенный омический контакт.
Контакт содержит слой 1 силицида никеля толщиной 0,02 -0,08 мкм, слой 2 никеля толщиной 0,2 1,0 мкм, слой 3 меди толщиной 3 8 мкм и слой оловосодержащего припоя толщиной 3 10 мкм, а также кремниевый солнечный элемент 5.
Слой 1 силицида никеля служит переходным слоем и обеспечивает низкое переходное сопротивление контакта. Слой никеля 2 является экраном от диффузии меди в кремний и подслоем для наращивания меди. Толщина слоя никеля менее 0,2 мкм недостаточна для выполнения указанных функций, а толщина более 1,0 мкм не дает заметных преимуществ. В тоже время скорость роста "химического" никеля при толщине более 1,0 мкм значительно падает. Слой меди 3 значительно снижает электрическое сопротивление контакта, во-первых, из-за более высокой проводимости меди по сравнению с никелем, во-вторых, из-за увеличения толщины контакта. Все это снижает последовательное сопротивление солнечного элемента и повышает эффективность преобразования излучения. Толщина слоя меди менее 3 мкм не обеспечивает достаточную электропроводность контакта. При толщине слоя меди более 8 мкм, когда толщина контактных полос становится сопоставимой с их шириной, возрастает затенение поверхности солнечного элемента, что снижает эффективность последнего.
Пример. Кремниевую пластину, на которой сформированы структуры солнечных элементов n+-p -p+-типа и вытравлены окна под контакты в просветляющем покрытии (на лицевой стороне), помещают на 20 25 с в ванну с активирующим раствором состава, мас.
Ионы золота 5•102
Кислота соляная 7
Аммоний фтористый 15
Вода деионизованная Остальное
Из активирующего раствора подложку переносят в нагретый до кипения никелирующий раствор состава, г/л:
Никель двухлористый 40
Кислота янтарная 20
Глицин 50
Натрий фосфороватистокислый 15
Натрий гидроокись 13,5
В никелирующем растворе пластину выдерживают 60 90 с.
После получения никелевого покрытия пластину подвергают термообработке в атмосфере азота или другой нейтральной среды при 300 ± 20oС в течение 30 ± 2 мин, чтобы сформировать на границе раздела никель - кремний переходный слой из силицида никеля. Непрореагировавший с кремнием никель стравливают в разбавленной азотной кислоте (HNO3:H2O 1:1) при 60 90oС в течение 4 6 мин.
Далее как описано выше наносят новый слой никеля. Время осаждения 3 5 мин.
Пластину с никелевым покрытием помещают в ванну для гальванического осаждения меди следующего состава, г/л:
Медь сернокислая 30
Натрий фосфорноватистокислый 130
Натрий фосфорноватистокислый двузамещенный 80
Время меднения 30 мин при плотности тока 0,4 А/дм2 и температуре электролита 50oС, рН 7,8 8,5.
Далее пластину помещают в ванну для гальванического лужения и выдерживают 15 20 мин, при комнатной температуре (плотность тока 0,3 0,5 А/дм2, напряжение 2 3 В), чтобы нанести на медь защитный слой сплава олово - висмут. Толщина полученных таким образом слоев соответствует п.5, приведенному в таблице ниже.
Пластину, на которой сформированы контактные слои, разрезают на отдельные солнечные элементы с помощью алмазного диска. После отмывки и высушивания солнечные элементы облуживают горячим способом в ванне с припоем ПОСК 50 18. Готовые солнечные элементы контролируют на имитаторе Солнца при различной степени концентрации излучения (К 1oC20).
Сравнительные характеристики солнечных элементов предлагаемой конструкции и прототипа приведены ниже. В таблице даны средние значения по ряду образцов 8 10 для каждого примера. Разброс значений в пределах одного ряда примера составляет 0,3oC0,5% абс.
Из таблицы видно, что предлагаемая конструкция омического контакта к солнечному элементу обладает большей эффективностью по сравнению с известной при всех значениях плотности солнечного излучения, особенно при высокой плотности К > 10. Кроме того, как видно из примера выполнения, предлагаемая конструкция создается простыми и дешевыми методами осаждения металлов, не требующими сложного, дорогостоящего оборудования.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗГОТОВЛЕНИЯ СОЛНЕЧНЫХ БАТАРЕЙ | 1991 |
|
RU2035091C1 |
Омический контакт к кремниевому солнечному элементу | 1989 |
|
SU1635843A1 |
Солнечный элемент | 1990 |
|
SU1790015A1 |
СПОСОБ ПОЛУЧЕНИЯ ФОТОГАЛЬВАНИЧЕСКОГО ЭЛЕМЕНТА | 2008 |
|
RU2392694C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ КРИСТАЛЛОВ | 1992 |
|
RU2035086C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ КРИСТАЛЛОВ | 1992 |
|
RU2035085C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ КРИСТАЛЛОВ | 1992 |
|
RU2012094C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВЫХ КРИСТАЛЛОВ | 1992 |
|
RU2012095C1 |
КОНТАКТНАЯ СИСТЕМА К ФОТОЭЛЕКТРИЧЕСКИМ ПРЕОБРАЗОВАТЕЛЯМ | 1987 |
|
RU1464831C |
СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТЕКТОРА КОРОТКОПРОБЕЖНЫХ ЧАСТИЦ | 2008 |
|
RU2378738C1 |
Использование: изобретение относится к электронной технике и может быть использовано в фотоэнергетике, преимущественно в солнечных элементах при преобразовании излучения высокой плотности. Сущность: омический контакт состоит из переходного слоя силицида никеля толщиной 0,02 - 0,08 мкм, слоя никеля толщиной 0,2 - 1,0 мкм, слоя меди толщиной 3 - 8 мкм и слоя оловосодержащего припоя толщиной 3 - 10 мкм. Силицид никеля обеспечивает низкое переходное сопротивление контакта, слой никеля служит экраном от диффузии меди в кремний, слой меди обеспечивает низкое электрическое сопротивление контакта. 1 ил.,1 табл.
Омический контакт к кремниевому солнечному элементу, включающий последовательно расположенные слои силицида никеля, никеля и оловосодержащего припоя, отличающийся тем, что на слое никеля дополнительно расположен слой меди толщиной 3 8 мкм.
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
Современные проблемы полупроводниковой фотоэнергетики.- М.: Мир, 1988, с.201 - 205 | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Spitzer M.B., Keavnej C.J., Geoffray L.M | |||
Theoretical and experimental considerations for high silicon solar cells performance// Sollar cells | |||
Пневматический водоподъемный аппарат-двигатель | 1917 |
|
SU1986A1 |
Печь для сжигания твердых и жидких нечистот | 1920 |
|
SU17A1 |
Переносная печь для варки пищи и отопления в окопах, походных помещениях и т.п. | 1921 |
|
SU3A1 |
Solar Cells | |||
Кузнечная нефтяная печь с форсункой | 1917 |
|
SU1987A1 |
Прибор для промывания газов | 1922 |
|
SU20A1 |
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды | 1921 |
|
SU4A1 |
Pereyra J., Andrade A.M | |||
Improved reproducibillty in the Ni/Sn - Pb metallirazation process for crystalline silicon solar cells | |||
Колосниковая решетка с чередующимися неподвижными и движущимися возвратно-поступательно колосниками | 1917 |
|
SU1984A1 |
ПЕРЕДВИЖНАЯ ДИАГРАММА ДЛЯ СРАВНЕНИЯ ЦЕННОСТИ РАЗЛИЧНЫХ ПРОДУКТОВ ПО ИХ КАЛОРИЙНОСТИ | 1919 |
|
SU285A1 |
Авторы
Даты
1996-08-10—Публикация
1994-06-01—Подача